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“Creating a life that reflects your values and satisfies your soul is a rare
achievement. In a culture that relentlessly promotes avarice and excess
as the good life, a person happy doing his own work is usually considered
an eccentric, if not a subversive. Ambition is only understood if it’s to
rise to the top of some imaginary ladder of success. Someone who takes
an undemanding job because it affords him the time to pursue other
interests and activities is considered a flake. A person who abandons a
career in order to stay home and raise children is considered not to be
living up to his potential – as if a job title and salary are the sole
measure of human worth.
You’ll be told in a hundred ways, some subtle and some not, to keep
climbing, and never be satisfied with where you are, who you are, and
what you’re doing. There are a million ways to sell yourself out, and I
guarantee you’ll hear about them.
To invent your own life’s meaning is not easy, but it’s still allowed, and
I think you’ll be happier for the trouble.”

– Bill Watterson





Abstract

Brain analysis mainly relies on complex recording techniques and on advanced signal
processing tools used to interpret these recordings. In neurophysiological time series, as
strong neural oscillations are observed in the mammalian brain, the natural processing
tools are centered on spectral analysis, Fourier decomposition, and on linear filtering
into canonical frequency bands. While this approach has had significant impact in
neuroscience, it may give a misleading representation of the signal. Indeed, it is standard
to see neuro-scientists consider small subsets of coefficients, implicitly assuming that
the signals of interest are narrow-band, which turns out to be too reductive. Multiple
warnings have been raised about this fallacy, and about the need of more appropriate
methods to represent the signals.

More generally, a large number of neuroscientific studies use ad-hoc recipes to analyze
time series and describe their properties. Importantly, these methods are heavily based
on narrow-band filtering and on custom correlation metrics, and they fail to give a
goodness of fit. Therefore, setting the parameters of these methods can only be driven
by how much they lead to a strong value of the metric. As a consequence, even though
these metrics give reasonable information, a legitimate and controlled comparison of
methods and parameters, and therefore of the results, is impossible. This is the case for
instance for a phenomenon known as phase-amplitude coupling (PAC), which consists
in an amplitude modulation of a high frequency signal, time-locked with a specific phase
of a slow neural oscillation.

In this work, we first propose to use driven autoregressive models (DAR) on neuro-
physiological time-series. These models give a spectral representation of the signal
conditionally to another signal, and thus are able to capture PAC in a probabilistic
model of the signal, for which statistical inference is fast and well-posed. Giving a
proper model to the signal enables easy model selection and clear hypothesis-testing
by using the likelihood of the given model with respect to the data. This data-driven
approach is fundamentally different from the traditional PAC metrics, and constitutes a
major improvement in PAC estimation by adopting a principled modeling approach.

We first present DAR models in a signal processing perspective, describing how they
provide a non-linear spectral estimation of the signal. In particular, we discuss the
stability of these models, and propose fast inference algorithms for the different para-
metrizations considered. Then, we present how to use these models for PAC analysis.
We demonstrate the advantage of the model-based approach on three datasets acquired
in rats and in humans. Using the powerful model selection enabled by the model-based
approach, we further provide novel neuroscientific insights on previously reported PAC
phenomena. We discuss the influence of the amplitude of the slow driving oscillation,
we provide a directionality estimation through a delay parameter, and we describe
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spectral properties of the slow driving oscillation. We also show that DAR models are
statistically more robust to small samples than non-parametric approaches.

In a subsequent chapter, we explore different extensions to DAR models, relying on an
estimation of the driving signal from the data. We describe preliminary findings on
estimating PAC in multivariate signals, estimating virtual channels jointly with DAR
models. We also show that DAR models can be used as encoding models, where the
brain activity is predicted from the stimulus, leading naturally to spectro-temporal
receptive fields estimation.

The last chapter covers a different class of models, which focuses on the temporal
morphology of neurophysiological time-series, assuming that the signal is composed of a
small number of prototypical temporal waveforms. Using a principled mathematical
formulation of this problem, namely convolutional sparse coding (CSC), we show that
we obtain a rich signal representation in a completely unsupervised way, avoiding
the misleading Fourier decomposition. As CSC models were primarily developed for
natural image processing, we extend their formulation to tackle the unusual challenges
of neurophysiological time-series, using heavy-tail noise distribution and multivariate
decompositions. We develop efficient inference algorithms for each formulation, and
describe the potential of such representations on simulations and on empirical recordings.

Our DAR and CSC models offer novel and more robust possibilities to analyze neuro-
physiological time-series, paving the way for new insights on how our brain functions
via spectral interactions or prototypical waveforms.

Keywords Time series – modeling – autoregressive – convolutional sparse coding
– cross-frequency coupling – multivariate – encoding – neurophysiology – magneto-
encephalography



Résumé

L’analyse du cerveau repose principalement sur des techniques d’enregistrement com-
plexes et sur des outils avancés de traitement du signal utilisés pour interpréter ces
enregistrements. Dans les séries temporelles neurophysiologiques, alors que de fortes
oscillations neuronales sont observées dans le cerveau des mammifères, les outils de
traitement naturels sont centrés sur l’analyse spectrale, la décomposition de Fourier et
le filtrage linéaire dans les bandes de fréquence canoniques. Bien que cette approche
ait eu un impact significatif en neuroscience, cela peut conduire à une représentation
trompeuse du signal. En effet, il est classique de voir les neuro-scientifiques considérer
de petits sous-ensembles de coefficients, en supposant implicitement que les signaux
d’intérêt sont à bande étroite, ce qui s’avère trop réducteur. Plusieurs avertissements
ont été émis à propos de ce risque et du besoin de méthodes plus appropriées pour
représenter les signaux.

Plus généralement, un grand nombre d’études neuroscientifiques utilisent des recettes
ad hoc pour analyser les séries temporelles et décrire leurs propriétés. Il est important
de noter que ces méthodes sont fortement basées sur le filtrage à bande étroite et
sur des métriques de corrélation personnalisées, et ne permettent pas de quantifier
l’attache aux données. Par conséquent, le choix des paramètres de ces méthodes ne peut
dépendre que de la mesure dans laquelle ils génèrent une valeur forte de la métrique.
En conséquence, même si ces métriques fournissent des informations raisonnables, une
comparaison légitime et contrôlée des méthodes et des paramètres, et donc des résultats,
est impossible. C’est le cas par exemple d’un phénomène connu sous le nom de couplage
phase-amplitude (PAC), qui consiste en une modulation d’amplitude d’un signal haute
fréquence, correlée temporellement avec une phase spécifique d’une oscillation neuronale
plus lente.

Dans ce travail, nous proposons tout d’abord d’utiliser des modèles autorégressifs
pilotés (DAR) sur des séries temporelles neurophysiologiques. Ces modèles donnent une
représentation spectrale du signal, conditionnellement à un autre signal, et sont donc en
mesure de capturer le PAC dans un modèle probabiliste du signal, pour lequel l’inférence
statistique est rapide et bien posée. Donner un modèle approprié au signal permet une
sélection facile du modèle et un test d’hypothèses clair en utilisant la vraissemblance
d’un modèle donné par rapport aux données. Cette approche basée sur les données diffère
fondamentalement des mesures traditionnelles du PAC et constitue une amélioration
majeure de l’estimation du PAC en adoptant une approche de modélisation fondée sur
des principes.

Nous présentons d’abord les modèles DAR dans une perspective de traitement du
signal, en décrivant comment ils fournissent une estimation spectrale non linéaire
du signal. Nous discutons en particulier de la stabilité de ces modèles et proposons
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des algorithmes d’inférence rapides pour les différentes paramétrisations considérées.
Ensuite, nous présentons comment utiliser ces modèles pour l’analyse du PAC. Nous
démontrons l’avantage de cette approche basée sur un modèle en utilisant trois jeux de
données acquis chez le rat et chez l’homme. En utilisant la puissante sélection de modèle
permise par l’approche basée sur un modèle, nous fournissons en outre de nouvelles
informations neuroscientifiques sur des phénomènes PAC déjà rapportés. Nous discutons
de l’influence de l’amplitude de l’oscillation neuronale lente, nous fournissons une
estimation de la directivité via un paramètre de retard et nous décrivons les propriétés
spectrales de l’oscillation neuronale lente. Nous montrons également que les modèles
DAR sont statistiquement plus robustes pour les petits échantillons que les approches
non paramétriques.

Dans un chapitre ultérieur, nous explorons différentes extensions des modèles DAR, en
nous basant sur une estimation du signal pilote à partir des données. Nous décrivons
les résultats préliminaires sur l’estimation du PAC dans des signaux multivariés, en
estimant des canaux virtuels conjointement avec les modèles DAR. Nous montrons
également que les modèles DAR peuvent être utilisés comme modèles d’encodage, dans
lesquels l’activité cérébrale est prédite à partir du stimulus, conduisant naturellement à
une estimation des champs récepteurs spectro-temporels.

Le dernier chapitre couvre une classe de modèles différente, qui se concentre sur la
morphologie temporelle des séries temporelles neurophysiologiques, en supposant que
le signal est composé d’un petit nombre de formes d’onde temporelles prototypiques.
En utilisant une formulation mathématique bien posée de ce problème, à savoir le
codage convolutionnel parcimonieux (CSC), nous montrons que nous obtenons une
représentation riche du signal de manière totalement non supervisée, en évitant la
décomposition de Fourier. Étant donné que les modèles CSC ont été principalement
développés pour le traitement d’images naturelles, nous avons étendu leur formulation
afin de relever les défis inhabituels posés par les séries temporelles neurophysiologiques, en
étendant à des distributions de bruit à queue lourde, et à des décompositions multivariées.
Nous développons des algorithmes d’inférence efficaces pour chaque formulation et
décrivons le potentiel de telles représentations sur des simulations et des enregistrements
empiriques.

Nos modèles DAR et CSC offrent des possibilités nouvelles et plus robustes d’analyse
de séries temporelles neurophysiologiques, ouvrant la voie à de nouvelles informations
sur le fonctionnement de notre cerveau via des interactions spectrales ou des formes
d’onde prototypiques.

Mots clés Séries temporelles – modélisation – autoregressif – codage convolutionel
parcimonieux – couplage cross-fréquence – multivarié – codage – neurophysiologie –
magneto-encéphalographie



Notation

General

R Set of real-valued numbers

RN Set of real-valued vectors of size N

ai ith element of a

â Estimated value of a

A> Transpose of matrix A

‖v‖q Norm q of vector v. ‖v‖q =
(∑

i |vi|q
)1/q

Ja, bK Set of integers x such that a ≤ x ≤ b

U , E ,N ,S Uniform, exponential, Gaussian, and α-stable distributions

Time series

x[t] Value of x at time t

x��� Reversed-time series. If x ∈ RT , then x���[t] = x[T − t+ 1].

z ∗ d Linear convolution. If z ∈ RT+L−1 and d ∈ RL, then z ∗ d ∈ RT . If
D ∈ RP×L, then z ∗D ∈ RP×T is obtained by convolving every row
of D by z.

D ∗̃ D′ For D′ ∈ RP×L, D ∗̃ D′ ∈ R2L−1 is obtained by summing the convo-
lution between each row of D and D′: D ∗̃ D′ =

∑P
p=1Dp ∗D′p.
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Introduction

“The truth is, most of us discover where we are
headed when we arrive.”

– Bill Watterson
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1.1 Neuroscientific challenges

The scientific study of the brain has lead to remarkable advances since the middle of the
twentieth century, including for instance the description of the visual cortex (Hubel and
Wiesel, 1962) or the discovery of place cells (O’Keefe and Dostrovsky, 1971). However,
many questions remain unsolved, and understanding the brain constitutes a major
scientific challenge of our time. This challenge mainly relies on advanced techniques
used to record the brain activity, and on signal processing tools used to interpret these
recordings.

Measurements of neural activity Brain imaging techniques come with different
temporal and spatial resolutions, along with different degrees of invasiveness. Electroen-
cephalography (EEG), invented in the ninetieth century, measures the electrical activity
of the brain with electrodes placed along the scalp. Magnetoencephalography (MEG)
(Cohen, 1968), invented in the late sixties, measures the magnetic field produced by
the brain, using very sensitive sensors. Both EEG and MEG are non-invasive and have
a high temporal resolution (around 1ms), making them extremely useful to monitor
dynamic changes in the brain. Their spatial resolution is however limited (around 2 cm),
and they suffer from a low signal-to-noise ratio (SNR). Note that there is hope to bring
MEG sensors closer to the brain with new optically pumped magnetometers (Boto
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et al., 2018), leading to better SNR and better spatial resolution. A complementary
non-invasive technique is functional magnetic resonance imaging (fMRI) (Ogawa et al.,
1990), which has a limited temporal resolution (typically around 1 s), but with a better
spatial resolution (below 5mm), enabling precise functional brain mappings.

In order to obtain at the same time good temporal and spatial time scale, electrodes can
also be placed closer to the brain, with much more invasive techniques. For example, in
electrocorticography (ECoG) (Jasper and Penfield, 1949) electrodes are placed on the
cortical surface, below the skull. Another technique consists in placing micro-electrodes
directly inside the brain to record so-called local field potential (LFP) (Einevoll et al.,
2013). These techniques are much more difficult to implement, but provides extremely
valuable recordings with excellent SNR. One limitation is however is that they offer a
limited coverage of the brain. Spatial and temporal resolutions of these methods are
summarized in Figure 1.1.
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Figure 1.1 – Spatial and temporal resolutions of neural activity recording techniques.

Neural oscillations In neurophysiological time series, i.e. recordings with a temporal
dimension, neural oscillations are observed in the mammalian brain at different temporal
and spatial scales. Figure 1.2 presents an example of neural oscillations in a rodent
striatum LFP recording. We clearly see a strong oscillation around 3Hz, along with
some weaker oscillations around 80Hz. It leads naturally to some spectral analysis, and
a large part of the traditional analysis is thus centered around the Fourier decomposition
and linear filtering, leading to canonical frequency bands. In human, the main frequency
bands are called delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (15-30Hz), gamma
(30-90Hz), and high gamma (>50Hz) (Buzsáki, 2006).

In each frequency band, signal power can be quantified, and used for instance to
characterize cognitive states. For example, strong alpha rhythms are present in the
visual cortex, and are usually associated with wakeful relaxation with closed eyes, while
strong beta rhythms are associated with normal waking consciousness, and are located
notably in the motor cortex (Buzsáki, 2006). Some rhythms have strong power in the
same frequency band but are inherently different. The most remarkable example is the
mu rhythm, which peaks in the same frequency band as the alpha rhythm, but which
have a very different waveform in the shape of the Greek letter µ. They are located
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predominantly in the motor cortex when the body in physically at rest (Buzsáki, 2006,
Cole and Voytek, 2017).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (s)

3 Hz 80 Hz

Figure 1.2 – Example of neural oscillations, in rodent striatal LFP recordings. We
observe strong oscillations around 3Hz and around 80Hz.

Non-sinusoidal waveforms While spectral analysis based on Fourier basis and
linear filtering has had significant impact in neuroscience, it may give a misleading
representation of the signal. Indeed, it is standard to see neuro-scientists consider
small subsets of coefficients, implicitly assuming that the signals of interest are narrow-
band. This hypothesis is rather reductive (Mazaheri and Jensen, 2008), and wide-band
waveforms have also been reported as key features in neurophysiological signals (Jones,
2016, Cole et al., 2016). Typically, a classic Fourier analysis fails to distinguish alpha
rhythms from mu rhythms, which have the same peak frequency at around 10Hz, but
whose waveforms are different (Cole and Voytek, 2017, Hari and Puce, 2017). Jasper
warned about this misconception as early as in 1948: “Even though it may be possible to
analyze the complex forms of brain waves into a number of different sine-wave frequencies,
this may lead only to what might be termed a “Fourier fallacy”, if one assumes ad hoc
that all of the necessary frequencies actually occur as periodic phenomena in cell groups
within the brain.” (Jasper, 1948). There is now a debate regarding whether neural
activity consists more of transient bursts of isolated events rather than rhythmically
sustained oscillations (van Ede et al., 2018). Going beyond classic Fourier analysis and
linear filtering requires designing new tools to describe neurophysiological time series.

Non-stationary signals Another challenge is the non-stationarity of the neuro-
physiological signals. Many analysis tools rely on the hypothesis that the signal’s
characteristics are stable over time. Then, to measure fluctuations over time, the stand-
ard technique is to apply the same analysis multiple time on a sliding time windows.
However, this technique reduces dramatically the robustness of the analysis, since for
each computation the data size is reduced to a small window (Leonardi and Van De Ville,
2015). The robustness of an analysis is critical in neurophysiological signals, since the
SNR can be extremely low, and the dynamic changes very fast. To overcome this
limitation, different assumptions can be made instead of the too general non-stationarity
assumption.

A prominent technique is to precisely synchronize multiple time windows with stimulus
onsets, and to average these synchronized signals. This technique reveals the so-called
event-related potential (ERP) (Davis et al., 1939), where the synchronized activity
emerges from the noise through averaging. This powerful technique is however limited
to temporally well defined stimuli, and only extracts the part of the response which is
synchronized with the stimuli.
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Another weaker assumption is to consider that the signal switches between different
states with different characteristics. The signal changes over time from one state to
another, but the states themselves are stable in time. This is the idea behind Hidden
Markov models (HMM) (Baum and Petrie, 1966), which have been used for instance to
estimate fast transient brain states in MEG data (Woolrich et al., 2013, Baker et al.,
2014, Vidaurre et al., 2017). This assumption is also used in switching autoregressive
models, as described later in this introduction. Here again, the key element of this
assumption is to take into account multiple time windows to estimate each state’s
characteristics. Therefore, the analysis uses many more time points and can be much
more robust and statistically efficient.

Another approach is to assume the signal is a linear sum of local temporal patterns,
which are repeated multiple times over the signals. The patterns are assumed to be
stable over time, but the decomposition of the signal fluctuates, allowing dynamic
changes in the signals. This assumption is the basis of convolutional dictionary learning
approaches as described later in this introduction. Here again, the goal is to use multiple
realizations of the same pattern to get a more robust analysis. Note that contrary to
the ERP, there is no assumption of synchronization with some stimuli onsets.

Proper signal models The need of new analysis tools lead to the design of many
ad-hoc metrics describing the signal without a proper signal model. Using ad-hoc
recipes, these metrics are able to quantify some phenomena present in the signals, but
do not provide any measure of goodness of fit. Therefore, setting the parameters of these
methods, such as filtering parameters, can only be driven by how much they lead to a
strong value of the metric. As a consequence, even though current metrics give reasonable
information, a legitimate and controlled comparison of methods and parameters, and
therefore of the results, is impossible. Additionally, while simulations provide better
control, they do not fully solve this issue, since a simulation may approximate at best,
or miss at worst, the real structure of neurophysiological signals.

On the contrary, a model-based approach allows computing the likelihood of a recorded
neural signal with respect to the model. This likelihood can be interpreted as a measure
of the goodness of fit of the model, and often corresponds to the classical measure of
explained variance. Such an evaluation metric is a natural criterion to compare models,
and a first step towards an automatic model parameters selection on empirical data.
Indeed, it enables out-of-sample evaluation, i.e. an evaluation of the model on some data
which was not used during model inference and parameter selection. This evaluation is
standard in the machine learning community (Bishop, 2006), and quantifies the model’s
ability to generalize the structure of the signals on unseen data.

Importantly, a signal modeling approach can be entirely statistical, as opposed to
biophysical modeling approaches (Hyafil et al., 2015, Chehelcheraghi et al., 2017). The
goal of statistical model is to better explain and describe the empirical data themselves
in the absence of any assumption regarding the neural mechanisms that have generated
them.

Computational efficiency Finally, another critical aspect of analysis techniques is
the computationally efficiency. Indeed, the typical neurophysiological recording can
be very long (tens of minutes to hours) and spread over multiple channels (tens to
hundreds). The data can easily reach several gigabytes for each subject. Moreover,
because of recent concerns about predictive power and reproducibility in neuroscience
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(Carp, 2012, Munafò et al., 2017), the number of subjects in brain study is also increasing.
Whereas in the past a typical study used to have 20 to 30 subjects, some recent datasets
contain thousand of subjects, such as the human connectome project (HCP) (Van Essen
et al., 2013), or the Cambridge center for aging and neuroscience (Cam-CAN) dataset
(Taylor et al., 2017). Therefore, the analysis must be computationally efficient to be
able to process such increasingly large amount of data.

1.2 Cross-frequency coupling

Cross-frequency coupling (CFC) The characterization of neural oscillations have
given rise to important mechanistic hypotheses regarding their functional role in neuros-
ciences (Buzsáki, 2006, Fries, 2015). One working hypothesis suggests that the coupling
across neural oscillations may regulate and synchronize multi-scale communication of
neural information within and across neural ensembles (Buzsáki, 2010, Fries, 2015). The
coupling across different oscillatory activity is generically called cross-frequency-coupling
(CFC) and has started receiving much attention (Jensen and Colgin, 2007, Lisman
and Jensen, 2013, Canolty et al., 2006, Canolty and Knight, 2010, Hyafil et al., 2015).
The most frequent instance of CFC consists in the observation that the power of high
frequency activity is modulated by fluctuations of low-frequency oscillations, resulting
in phase-amplitude coupling (PAC). This can be observed for instance in Figure 1.2,
where at the peak of each 3Hz oscillation we see a increase of energy at 80Hz. Other
instances of CFC include phase-phase coupling (Tort et al., 2007, Malerba and Kopell,
2013), amplitude-amplitude coupling (Bruns and Eckhorn, 2004, Shirvalkar et al., 2010),
and phase-frequency coupling (Jensen and Colgin, 2007, Hyafil et al., 2015). By far,
PAC is the most reported CFC in the literature. Figure 1.3 presents these different
couplings on simple sinusoids.

Figure 1.3 – Different sort of cross-frequency coupling (CFC), including amplitude-
amplitude coupling (a/b), phase-phase coupling (a/c), phase-frequency coupling (a/d),
and phase-amplitude coupling (a/e). Reproduced from Jensen and Colgin (2007).
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Phase-amplitude coupling (PAC) Seminally, PAC was described in LFP of rodents
displaying a modulation of gamma band power (40-100Hz) as a function of the phase
of their hippocampal theta band (5-10Hz) (Bragin et al., 1995, Tort et al., 2008).
Parallel recordings in different brain areas in behaving rodents have also highlighted
differences in PAC between brain areas (e.g., hippocampus and striatum) at specific
moments during a goal-oriented behavior, both in terms of which high-frequency range
and how narrow-band the low frequency is (Tort et al., 2008). PAC may promote
cellular plasticity underlying memory formation (Axmacher et al., 2006). In humans,
theta (4-8Hz)/gamma (80-150Hz) PAC was described in auditory cortex during speech
perception (Canolty et al., 2006). In more recent works, theta/gamma PAC was
reported during the processing of auditory sequences in both humans and monkeys
(Kikuchi et al., 2017), during working memory maintenance in human hippocampus
(Axmacher et al., 2010), and during serial memory recall using non-invasive human
magnetoencephalography (MEG) (Heusser et al., 2016). PAC has been proposed to
support the maintenance of information and to play an important role in long distance
communication between different neural populations, considering that slow oscillations
can propagate at larger scales than fast ones (Jensen and Colgin, 2007, Khan et al., 2013,
Lisman and Jensen, 2013, Hyafil et al., 2015, Bonnefond et al., 2017). Consistent with
this notion, PAC has also been reported across distinct brain regions (Sweeney-Reed
et al., 2014). In sum, PAC has been proposed as a canonical mechanism for neural
syntax (Buzsáki, 2010).

PAC estimation techniques Given the growing interest in CFC, and in PAC more
specifically, developing adequate and unbiased tools to quantify the posited signatures
of neural computations has motivated a number of contributions. We describe here
these techniques, denoting y the signal containing the high-frequency activity, and x
the signal with low-frequency oscillations. When a signal x results from a band-pass
filtering step, we note the central frequency of the filter fx and the bandwidth ∆fx.

To estimate PAC, the typical pipeline reported in the literature consists in four main
processing steps:

1. Bandpass filtering is performed in order to extract the narrow-band neural oscilla-
tions at both low frequency fx and high frequency fy;

2. A Hilbert transform is applied to get the complex-valued analytic signals of x and
y;

3. The phase φx of the low-frequency oscillation and the amplitude ay of the high-
frequency signals are extracted from the complex-valued signals;

4. A dedicated approach is used to quantify the correlation between the phase φx
and the amplitude ay signals.

For instance, the modulation index (MI) described in the pioneering work of Canolty
et al. (2006) is the mean over time of the composite signal z = aye

φx . The stronger
the coupling between φx and ay, the more the MI deviates from zero. This index has
been further improved with a better normalization by Özkurt and Schnitzler (2011).
Another approach (Lakatos et al., 2005, Tort et al., 2010) has been to partition [0, 2π]
into smaller intervals to get the time points t when φx(t) is within each interval, and to
compute the mean of ay(t) on these time points. PAC was then quantified by looking
at how much the distribution of ay with respect to φx differs from uniformity. For
instance, a simple height ratio (Lakatos et al., 2005), or a Kullback-Leibler divergence
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as proposed by Tort et al. (2010), can be computed between the estimated distribution
and the uniform distribution. Alternatively, it was proposed in Bruns and Eckhorn
(2004) to use direct correlation between x and ay. As this method yielded artificially
weaker coupling values when the maximum amplitude ay was not exactly on the peaks
or troughs of x, this method was later extended to generalized linear models (GLM)
using both cos(φx) and sin(φx) by Penny et al. (2008). This approach offers a metric
which is independent of the phase at which the maximum amplitude occurs. Other
approaches employed a measure of coherence (Colgin et al., 2009) or the phase-locking
value (Lachaux et al., 1999).

Limitations As one can see, there is a long list of methods to quantify CFC in neural
time series. Yet, a number of limitations which can significantly affect the outcomes and
interpretations of neuroscientific findings exist with these approaches. For example, a
systematic bias rises where one constructs the so-called comodulogram. A comodulogram
is obtained by evaluating the chosen metric over a grid of frequency fx and fy. This
bias emerges from the choice of the bandpass filter, which involves the critical choice of
the bandwidth ∆fy. It has been reported several times that to observe any amplitude
modulation, the bandwidth of the fast oscillation ∆fy has to be at least twice as high as
the frequency of the slow oscillations fx: ∆fy > 2fx (Berman et al., 2012, Dvorak and
Fenton, 2014). As a comodulogram uses different values for fy, many studies have used
a variable bandwidth, by taking a fixed number of cycles in the filters. The bandwidth is
thus proportional to the center frequency: ∆fy ∝ fy. This choice leads to a systematic
bias, as it hides any possible coupling below the diagonal fy = 2fx/α, where α = ∆fy/fy
is the proportionality factor. Other studies have used a constant bandwidth ∆fy; yet
this also biases the results towards the low driver frequency fx, considering that it hides
any coupling with fx > ∆fy/2. A proper way to build a comodulogram would be to
take a variable bandwidth ∆fy ∝ fx, with ∆fy > 2fx. However, this is not common
practice as it is computationally very demanding, because it implies to bandpass filter y
again for each value of fx.

Another common issue arises with the use of the Hilbert transform to estimate the
amplitude and the phase of real-valued signals. Such estimations rely on the hypothesis
that the signals x and y are narrow-band, i.e. almost sinusoidal. However, numerous
studies have used this technique on very wide-band signals such as the entire gamma
band (80-150Hz) (Canolty et al., 2006) (see other examples in Chavez et al. (2006)).
The narrow-band assumption is debatable for high frequency activity and, consequently,
using the Hilbert transform may yield non-meaningful amplitude estimations, and
potentially poor estimations of PAC (Chavez et al., 2006, Dvorak and Fenton, 2014).
Note also that, in this context, wavelet-based filtering is equivalent to the Hilbert
transform (Quiroga et al., 2002, Bruns, 2004), and therefore does not provide a more
valid alternative option.

Besides these issues of filtering and inappropriate use of Hilbert transforms, Hyafil
(2015) also warned that certain choices of bandwidth ∆fy might mistake phase-frequency
coupling for PAC, such as presented in Figure 1.4. See also the more recent work in
Aru et al. (2015) for discussion and more practical recommendations for PAC analysis.
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Figure 1.4 – Misidentification of phase-frequency coupling as phase-amplitude coupling.
Reproduced from Hyafil (2015).

1.3 Non-linear autoregressive models
Given these limitations of PAC estimation metrics, we propose to use autoregressive
(AR) models to capture PAC in neurophysiological time-series. Indeed, we first note
that PAC corresponds to a modulation of the power-spectral density (PSD) of the
signal. This remark naturally leads to AR models, which are stochastic processes that
naturally estimate the PSD of signals. As we not only want to estimate the PSD, but
also the PSD modulation, we develop non-linear AR models which estimate the PSD
conditionally to a slowly-varying oscillation.

Giving a proper signal model to the signal enables easy model selection and clear
hypothesis-testing by using the likelihood of the given model. This data-driven approach
is fundamentally different from the traditional PAC metrics, and constitutes a major
improvement in PAC estimation by adopting a principled modeling approach. We first
limit ourselves to univariate signals, yet a multivariate extension is proposed later in
this manuscript.

Autoregressive models (AR) AR models, also known as linear prediction modeling
(Makhoul, 1975), are stochastic signal models, which aim to forecast the signal values
based on its own past. More precisely, an AR model specifies that y depends linearly
on its own p past values, where p is the order of the model:

∀t ∈ [p+ 1, T ] y(t) +
p∑
i=1

aiy(t− i) = ε(t) , (1.1)

where, T is the length of the signal and ε is the innovation (or residual) modeled with
a Gaussian white noise: ε(t) ∼ N (0, σ(t)2).

AR models are mainly used for spectral estimation. Indeed, since an AR model is a
linear filter that is fitted to somehow whiten a particular signal y, the PSD of this filter
is close to the inverse of the PSD of the signal, providing a robust spectral estimation
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of the signal. For a linear AR model, the PSD of y at a frequency f is given by:

PSD(f) = σ2

∣∣∣∣∣∣
p∑
i=0

aie
−2jπfi

∣∣∣∣∣∣
−2

, (1.2)

where j2 = −1 and a0 = 1. This estimation converges to the true PSD of y when
p→∞, but in practice, using p ∈ [10, 100] gives satisfying results in most applications
(Kay and Marple, 1981).

AR models have been successfully used for spectral estimation in a wide variety of fields,
such as geophysics, radar, radio astronomy, oceanography, speech processing, and many
more (Kay and Marple, 1981). Importantly, they can be applied on any signal, even
deterministic, as they can be seen as linear predictions based on the p past elements,
independently from the way the signal was generated. However, in the specific case
of a noisy sum of perfect sinusoids, the peak amplitudes in AR spectral estimates are
proportional to the square of the power (Kay and Marple, 1981), unlike conventional
Fourier spectral estimates where the peak amplitudes are proportional to the power.
The method of Pisarenko (1973), later extended in the MUSIC algorithm (Schmidt,
1986), might be more suited for spectral estimation of such “ideal” signals. However, as
neurophysiological signals are not perfect sinusoids, AR model are well suited for their
analysis. For a good overview of spectral estimation techniques, including AR models,
we refer the reader to Kay and Marple (1981).

Interestingly, AR models yield a spectral estimation with an excellent frequency resolu-
tion. Here, frequency resolution is not defined as the distance between two points in the
PSD, which would go to zero as we increase zero-padding in the AR filter. Rather, the
frequency resolution is defined as the smallest distance that can be detected between
two spectral peaks. With this definition, spectral estimation with AR models has a
better frequency resolution than Fourier-based methods (Marple, 1977).

Another benefit of spectral estimation with AR models is the theoretical guarantee in
term of maximum entropy. Entropy is an information theory concept which quantifies
the information contained in a signal (Shannon and Weaver, 1963). Maximizing the
entropy of the spectrum consists in introducing as little as possible artificial information
in the spectrum (Ables, 1974). Assuming that we have p auto-correlations of a wide-sense
stationary signal, maximizing the entropy leads to the maximum likelihood estimate of
an AR model (Ables, 1974). In other words, the maximum likelihood estimate of an
AR model is the best spectral estimator in term of maximal entropy.

In neurophysiology, AR models have been successfully used to address multiple problems
such as spectral estimation (Spyers-Ashby et al., 1998), temporal whitening (Mahan et al.,
2015), and connectivity measures like Granger causality (Granger, 1988, Valdés-Sosa
et al., 2005, Haufe et al., 2010) or coherence (Baccalá and Sameshima, 2001).

Standard AR models are statistically efficient given their low number of parameters,
but they are linear, and therefore they cannot directly model non-linear phenomena
like PAC. The challenge here is to consider a signal model which is rich enough to
capture phenomena such as PAC, and simple enough to be statistically robust and
computationally efficient. In order to extend AR models to cope with such situations of
non-linearity and non-stationarity in signals, various advanced AR models have been
proposed in other research fields such as audio signal processing and econometrics.
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Non-linear AR models A first category of AR models extension are the time-varying
AR models (TVAR) (Dahlhaus, 1996), where an instantaneous AR model is updated at
each time point, with typically a single gradient descent step. However, as we would like
the models to capture PAC, we can assume that the different spectral states of PAC are
repeated multiple times on the signal. As TVAR models are unstructured, they do not
make use of this assumption and are thus expected to get a poorer estimation of PAC.

A second category of non-linear autoregressive models are based on conditional het-
eroskedasticity (ARCH (Engle, 1982), GARCH (Bollerslev, 1986)), and are extremely
popular in econometrics. In these models, the innovation variance σ2(t) is varying and
modeled with an AR model. Therefore, they are used to model signals whose overall
amplitude varies as a function of time. In the context of CFC and PAC, however, one
would like to model variations in the PSD itself, such as shifts in peak frequencies (a.k.a.
frequency modulations) or changes in amplitude only within certain frequency bands
(a.k.a. amplitude modulations).

To achieve these spectral modulations, we consider a third category of models, that we
call here the switching AR models. These models switch over time between different
instantaneous AR models, and the switching mechanism can be either deterministic or
probabilistic.

Switching AR models The seminal work of Tong and Lim (1980) introduced the
threshold AR (TAR) models, where a driving time series x acts as a switching mechanism
between several AR models applied on the signal y. Several extensions have been
developed to add a smooth transition between regimes, like the exponential AR (EAR)
(Haggan and Ozaki, 1981) or the smooth transition AR (STAR) (Chan and Tong, 1986)
models. The general formulation can be written as:

∀t ∈ [p+ 1, T ] y(t) +
p∑
i=1

ai(x(t))y(t− i) = ε(t) , (1.3)

where ai(x) can have different expressions. In TAR models, it is a piecewise constant
function. In EAR models, it is a sum of negative squared exponential ai(x) = bi +∑m
k=0 aike

−γkx
2 . In STAR models, it is a sum of sigmoid functions ai(x) =

∑m
k=0 aik(1 +

e−γk(x−ck))−1.

Concerning the driver x, some models consider it to be hidden, assuming for instance a
Markov chain structure (Hamilton, 1989). Such probabilistic inference is computationally
intensive and cannot be evaluated on a validation set, since the driver has to be re-
estimated on the validation set. In other models, a parametric approach enables model
evaluation on a validation set, which makes model comparison easy. For instance, the
driver can be a function of the signal y itself, as in self-exciting TAR (SETAR) (Tong
and Lim, 1980, Dijk et al., 2002) models. A typical choice is x(t) = y(t − d) with a
positive delay d > 0. The driver can also be optimized as a weighted average of several
potential drivers (Chen and So, 2006, Wu and Chen, 2007), before being used in a
deterministic (Chen and So, 2006) or a probabilistic (Wu and Chen, 2007) TAR models.
The set of potential drivers can also be used directly to linearly parametrize the AR
coefficients (Grenier, 1983, Jachan et al., 2007, Spiridonakos and Fassois, 2014).
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Driven AR models The models considered in this work are called driven AR (DAR)
models (Grenier, 2013, Dupré la Tour et al., 2017a). They are deterministic continuously
switching AR models, with a polynomial expression for ai(x):

ai(x) =
m∑
k=0

aikx
k , (1.4)

and where the driver x is an exogenous signal, i.e. it is considered to be known. We show
in particular how they give a spectral estimation conditionally to the exogenous driver,
which robustly captures PAC when using the low-frequency oscillation as the driver
x. DAR models are also extremely efficient computationally, thanks to the polynomial
parametrization.

DAR models provide efficient modeling of PAC thanks to a strong assumption. Indeed,
they assume that the coupling is stationary, and that the PSD fluctuations are driven
by a given signal. In other word, they assume that the PSD is non-stationary, but that
the fluctuations have a one-dimensional trajectory which is in already known. This
powerful assumption seems legitimate for PAC characterization, but is too strong for
general analysis.

1.4 Convolutional sparse coding

Another approach to analyze non-sinusoidal and non-stationary neurophysiological
signals is based on sparse representation learning. It consists in learning patterns
that offer sparse approximations, in the sense that signals are well approximated by
as few patterns as possible. Contrary to Fourier or wavelet bases, the patterns are
not predefined, but are learned from the signal itself, in an unsupervised fashion. In
particular, such learned representations are not limited to narrow frequency bands.
Sparse analyses have been quite successful in multiple fields such as computer vision
(Heide et al., 2015, Bagnell and Bradley, 2009, Kavukcuoglu et al., 2010), biomedical
imaging (Pachitariu et al., 2013), genomic (Mairal et al., 2010), and audio signal
processing (Grosse et al., 2007, Févotte et al., 2009).

Sparse representations Fourier representations can be extremely useful but are
generally not sparse. Indeed, in most applications the signals have a continuous spectrum,
and thus are not well approximated by a small number of sinusoids. To provide sparser
representations in image and signal processing, multiple bases were proposed (Mallat
and Zhang, 1993, Donoho and Johnstone, 1994, Candès et al., 2006). Among the most
successful ones, wavelet bases are composed of shifted and dilated versions of a small
set of patterns. A large effort has been dedicated to find the best wavelet set adapted
for instance to natural images (Daubechies, 1988, Simoncelli et al., 1992, Starck et al.,
2002, Do and Vetterli, 2005).

A different approach has been proposed by Olshausen and Field (1996), where the basis
(or dictionary) was adapted to the dataset itself. They applied this approach on image
patches and successfully learned a dictionary inducing sparse representations, from their
dataset. The dictionary learning approach was later shown to outperform predefined
bases for signal approximation (Elad and Aharon, 2006, Mairal et al., 2008). For more
details about sparse representations, we refer the reader to Mairal et al. (2014).
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Shift-invariant representations Since natural images have often millions of pixels,
their natural representation have a very large number of dimensions. Therefore, the
original dictionary learning was not applied on large images, but on small image patches
(Olshausen and Field, 1996). In this case, a single pattern can be learned multiple times
if it appears with different shifts with respect to the patch grid. In other words, a patch
decomposition imposes an arbitrary alignment with the signal structure, which can
artificially inflates the pattern diversity (Lewicki and Sejnowski, 1999). To overcome
this issue, several shift-invariant dictionary learning methods have been proposed.

The first mention to shift-invariance sparse representations was described in Lewicki and
Sejnowski (1999), using predefined patterns (a.k.a. kernels or atoms). Later, Grosse
et al. (2007) proposed a formulation with both dictionary learning and shift-invariant
sparse representations, with a now canonical formulation called convolutional sparse
coding (CSC).

Convolutional sparse coding (CSC) CSC is a mathematically principled formula-
tion which reads:

min
{dk},{zn

k
}

N∑
n=1

1
2

∥∥∥∥∥∥xn −
K∑
k=1

znk ∗ dk

∥∥∥∥∥∥
2

2

+ λ
K∑
k=1
‖znk ‖1 ,

s.t. ‖dk‖22 ≤ 1 ∀k,

(1.5)

where {xn}Nn=1 ⊂ RT are N observed signals, {dk}Kk=1 ⊂ RL are the K temporal atoms
we aim to learn, {znk }Kk=1 ⊂ RT−L+1 are K signals of activations (a.k.a. the code)
associated with xn, and λ > 0 is the regularization parameter.

This formulation uses an L1 regularization to induce sparsity in the activations (Tib-
shirani, 1996), making the problem convex in {znk }, contrary to the original formulation
of Olshausen and Field (1996). CSC was later extended to two-dimensional atoms
(Zeiler et al., 2010), and gained popularity in computer vision (Heide et al., 2015, Wohl-
berg, 2016b, Šorel and Šroubek, 2016, Kavukcuoglu et al., 2010), biomedical imaging
(Pachitariu et al., 2013), and audio signal processing (Grosse et al., 2007, Mailhé et al.,
2008).

Note that sparsity is critical in the CSC problem, since there is many more unknown
variables than known ones. Indeed, there are K(T − L+ 1)N +KL unknown variables,
for only NT points in the signals {xn}. For example, without the sparsity constraint,
a single dirac atom d0[t] = δ0,t and signals of activations identical to the signals
zn0 [t] = xn[t] would lead to a perfect reconstruction (except at the edges). Sparsity is
here the key element to avoid such trivial solutions.

Other methods CSC is not the only formulation of shift-invariant dictionary learning.
For instance, Jost et al. (2006) proposed the MoTIF algorithm, which uses an iterative
strategy based on generalized eigenvalue decompositions, where the atoms are assumed
to be orthogonal to each other and learnt one by one in a greedy way. More recently, the
sliding window matching (SWM) algorithm (Gips et al., 2017) was proposed for learning
time-varying atoms by using a correlation-based approach that aims to identify the
recurring patterns. Even though some success has been reported with these algorithms,
they have several limitations: SWM uses a slow stochastic search inspired by simulated
annealing and MoTIF poorly handles correlated atoms, simultaneously activated, or
having varying amplitudes; cases which often occur in practical applications.
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In a similar spirit, Brockmeier and Príncipe (2016) used the matching pursuit algorithm
combined with a rather heuristic dictionary update, which is similar to the MoTIF
algorithm. In a very recent study, Hitziger et al. (2017) proposed the AWL algorithm,
which presents a mathematically more principled approach close to CSC for modeling
neural signals. Yet, as opposed to classical CSC approaches, the AWL algorithm
imposes additional combinatorial constraints, which limit its scope to certain data that
contain spike-like atoms. Also, since these constraints increase the complexity of the
optimization problem, the authors had to resort to dataset-specific initializations and
many heuristics in their inference procedure.

Challenges with neural signals While the current state-of-the-art CSC methods
have a strong potential for modeling neural signals, they might also be limited as
they consider an `2 reconstruction error, which corresponds to assuming an additive
Gaussian noise distribution. While this assumption could be reasonable for several
signal processing tasks, it turns out to be very restrictive for neural signals, which often
contain heavy noise bursts and have low signal-to-noise ratio.

Another challenge is that CSC was essentially developed for univariate signals, whereas
neural signals generally have tens to hundreds of channels. Interestingly, images can
be multivariate such as color or hyper-spectral images, yet most CSC methods used
in computer vision only consider gray scale images. To the best of our knowledge, the
only reference to multivariate CSC is Wohlberg (2016a), where the author proposes two
models well suited for 3-channel images, but not for hundreds of channels. Multivariate
sparse coding was also developed in Barthélemy et al. (2012, 2013), yet their proposed
optimization techniques are not specific to shift-invariant models, and not scalable to
long signals.

Finally, neural signals can be very long (tens of minutes to hours sampled at 1 kHz),
therefore a computational challenge also rises, and optimization techniques used in CSC
are not well suited for long signals. A traditional workaround is to split long signals
into blocks, but the optimization problem is then changed, introducing edge-artifacts
which can bias the estimation.

1.5 Chapters summary
We describe here the contents of each chapter, emphasizing on the contributions, and
listing the associated publications.

Chapter 2: Driven autoregressive models In this chapter, we introduce driven
autoregressive (DAR) models. DAR models are deterministic continuously switching
AR models, with a polynomial expression ai(x) =

∑m
k=0 aikx

k, and where the driver
x is an exogenous signal. We also parametrize the log of the residual variance as a
polynomial expression of the driver log(σ(x)) =

∑m
k=0 bkx

k.

In Section 2.1, we describe the parametrization and propose an efficient estimation
method for DAR models. Estimating the coefficients aik leads to a simple system of
linear equations, which can be solved analytically. To estimate the residual’s variance
coefficients bk, we propose a Newton scheme and a heuristic to have a good initialization.
We empirically validate the polynomial expression through a comparison with a piecewise-
constant expression and with a sum of sigmoids. We also discuss an alternative
parametrization with an asynchronous driving behavior and a faster estimation.
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In Section 2.2, we discuss the stability of DAR models. Assuming that each instantaneous
AR model is stable, and that the system is slowly-varying, we derive a global stability
property. Then, we introduce a different parametrization for DAR models, based on
lattice representation and log-area-ratio, to force each instantaneous AR model to be
stable. To estimate these log-area-ratio coefficients, we propose a Newton scheme with
an good initialization based on intermediate lattice coefficients. Finally, we present an
experiment to explore the limit of quickly-varying drivers in DAR models.

This work lead to the following conference publication:

• Dupré la Tour, T., Grenier, Y., and Gramfort, A. (2017a). Parametric estimation
of spectrum driven by an exogenous signal. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4301–4305

As the main contributor to this project, I conducted the formal analysis, the model de-
velopment, the software implementation, the experiment conceptions and visualizations,
and the article writing. I am the only student who worked on the development and
validation of the method.

Chapter 3: DAR models and phase-amplitude coupling In this chapter, we
propose to use DAR models to capture and characterize phase-amplitude coupling
(PAC). To do so, we consider the low-frequency oscillation as the exogenous driver x.
This allows the instantaneous power spectral density (PSD) of the signal to be a function
of the low-frequency oscillation. Thus, DAR models are statistical signal models that
do not model PAC explicitly but which are able to capture it.

We advocate that DAR models address a number of the limitations of traditional PAC
metrics. They do not use bandpass filter or Hilbert transform on the high frequencies
y. More importantly, they introduce a measure of goodness of fit, through the use of a
probabilistic signal model. Thus, DAR model’s quality can be assessed by evaluating the
likelihood of the data under the model, enabling legitimate model selection. This feature
is unique to our modeling approach, and constitutes a major improvement compared to
past approaches that estimate CFC.

In Section 3.1, we describe how to use DAR models to capture PAC. We first describe the
models and detail the necessary preprocessing steps. Then, we adapt the parametrization
to make the model invariant to the phase of the coupling. We also describe how to
quantify PAC from the DAR model, and how to build a comodulogram. Finally, we
discuss that DAR models are not specific to PAC, but can also measure phase-frequency
coupling, and are related to amplitude-amplitude coupling.

In Section 3.2, we describe in detail how using DAR models enable model selection,
which presents a major improvement compared to past approaches that estimate PAC.
We start with a review of classic model selection techniques. Then, we use model
selection to choose the best filter extracting the driver. We validate this approach on
simulations, and apply it on three empirical datasets. This analysis lead to an original
hypothesis concerning an asymmetrical PSD of the driver. Then, we use model selection
to select the best delay between the driver and the signal. We discuss the directionality
interpretation of such delay, emphasizing the difference between this delay and a simple
phase difference. We validate this approach on simulations, and apply it on three
empirical datasets. Finally, we use model selection to answer an hypothesis concerning
the role of the driver’s amplitude. On three empirical datasets, we find that the driver’s
amplitude improves the model likelihood, which advocates that the driver’s amplitude
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is incorrectly discarded in most PAC analyses.

In Section 3.3, we discuss techniques to assess statistical significance in PAC estimation.
We first present standard permutation-based techniques, along with model selection
techniques that can be used with DAR models. Then, using PAC simulations, we show
that parametric methods such as DAR models are more robust to small samples than
non-parametric methods. Finally, we discuss the effect of non-sinusoidal waveforms of
PAC measures.

This work lead to the following journal publication:

• Dupré la Tour, T., Tallot, L., Grabot, L., Doyère, V., van Wassenhove, V., Gren-
ier, Y., and Gramfort, A. (2017b). Non-linear auto-regressive models for cross-
frequency coupling in neural time series. PLOS Computational Biology, 13(12)

As the main contributor to this project, I conducted the formal analysis, the model de-
velopment, the software implementation, the experiment conceptions and visualizations,
and the article writing. I am the only student who worked on the development and
validation of the method.

Chapter 4: Extensions to DAR models In this chapter, we propose different
extensions to DAR models, centered on the driver estimation. Indeed, in previous
chapters, we consider the driver x to be known, but this strong assumption can be
soften by optimizing the driver to better fit the spectral trajectory of the modeled signal.
Different applications directly stem from such driver estimation.

In Section 4.1, we first describe different potential approaches to optimize the driver.
Then, we propose a parametric approach to allow model evaluation on a validation set,
modeling the driver as a weighted sum of potential drivers. We develop an optimization
scheme based on gradient descent, and show the performances on both simulations and
empirical recordings.

In Section 4.2, we tackle PAC estimation in multivariate recordings. To leverage the
information contained in multiple channels, we develop an estimation based on a joint
estimation of two virtual channels and a DAR model. This method builds upon the
generalized eigenvalue decomposition (GED) method developed in Cohen (2017), and
extend it to DAR models. In particular, it uses the driver estimation scheme described
in previous section.

In Section 4.3, we show that DAR models can be considered as encoding models, where
the brain activity is predicted from the stimulus. Applying DAR models on ECoG
channels recorded jointly with the audio stimulus, we discuss preliminary findings and
show that driver estimation naturally leads to a spectro-temporal receptive field (STRF)
estimation.

This work lead to the following conference publication:

• Dupré la Tour, T., Grenier, Y., and Gramfort, A. (2018a). Driver estimation
in non-linear autoregressive models. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE

As the main contributor to this project, I conducted the formal analysis, the model de-
velopment, the software implementation, the experiment conceptions and visualizations,
and the article writing. I am the only student who worked on the development and
validation of the method.
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Chapter 5: Convolutional sparse coding In this chapter, we address the present
need in the neuroscience community to better capture the complex morphology of brain
waves. Our approach is based on convolutional sparse coding (CSC) models, which
are dictionary learning models using shift-invariant representations and strong sparsity
assumptions.

We propose efficient optimization schemes leading to state-of-the-art performances.
We then extend CSC models to cope with brain recordings challenges, such as severe
artifacts, low signal-to-noise ratio, and long multivariate signals. These extensions are
critical to be able to use CSC models on brain recordings.

In Section 5.1, we first present our CSC formulation, adding a positivity constraint on
the activation to take into account the polarity of neural activations. We then propose
efficient optimization schemes based on the quasi-Newton L-BFGS algorithm, which
outperform previously proposed state-of-the-art ADMM-based algorithms. We also
highlight critical details such as initialization schemes or possible parallel computations.
Using simulation, we demonstrate the state-of-the-art speed of our optimization method.
We also demonstrate the better performances of CSC models on simulated signals,
compared to other state-of-the-art dictionary learning with shift-invariant representa-
tions. With empirical LFP recordings, we show that CSC models are able to extract
prototypical waveforms, such as spikes or cross-frequency coupling atoms.

In Section 5.2, we propose an extension to CSC models to cope with heavy-tailed noise
that can be present in brain recordings. Our models, that we call αCSC, are based on
a probabilistic formulation and on α-stable distributions. To estimate these models,
we develop an inference strategy based on a Monte Carlo expectation-maximization
algorithm. The expectation step is performed with a Metropolis-Hasting algorithm
while the maximization step corresponds to a weighted CSC estimation. Results on LFP
recordings demonstrate that such algorithms can be robust to the presence of strong
transient artifacts and thus reveal insights on neural time-series without supervision.

In Section 5.3, we extend CSC model to multivariate time-series, using a rank-1 constraint
on the atoms to account for the instantaneous spreading of an electromagnetic source
over all the channels. We also propose efficient optimization strategies, namely a
locally greedy coordinate descent, and a projected gradient descent with precomputation
steps for faster gradient computations. We provide multiple numerical evaluations of
our method, which show the highly competitive running time on both univariate and
multivariate models. The algorithm scales sub-linearly with the number of channels
which means it can be employed even for dense sensor arrays with 200-300 sensors. We
also demonstrate the estimation performance of the multivariate model by recovering
patterns on low signal-to-noise ratio data. Finally, we illustrate our method with
non-sinusoidal atoms learned on multivariate MEG data, that thanks to the rank-1
model can be localized in the brain for clinical or cognitive neuroscience studies.

This work lead to the following conference and preprint publications:

• Jas, M., Dupré la Tour, T., Şimşekli, U., and Gramfort, A. (2017). Learning the
morphology of brain signals using alpha-stable convolutional sparse coding. In
Advances in Neural Information Processing Systems 30 (NIPS), pages 1099–1108
• Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018b). Multivariate
convolutional sparse coding for electromagnetic brain signals. In Advances in
Neural Information Processing Systems (NIPS)
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These projects were more collaborative than previous ones, and the work was not
centered on a single student. In particular, in the alpha-CSC project, I was a key
element in model development, software implementation, experiment conceptions and
visualizations, and article writing. In the multivariate CSC project, I contributed equally
with Thomas Moreau, conducting the formal analysis, the model development, the
software implementation, the experiment conceptions and visualizations, and the article
writing.
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Driven autoregressive models

“What do you do for living, my lad?”
“I learn things, and I love Chloe.”

– Boris Vian
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In this chapter, we introduce driven autoregressive (DAR) models. DAR models are
deterministic continuously switching AR models, which use a polynomial expression
ai(x) =

∑m
k=0 aikx

k, and where the driver x is an exogenous signal. We also parametrize
the log of the residual variance as log(σ)(x) =

∑m
k=0 bkx

k. We first define DAR models
and develop an efficient estimation algorithm. We show how to use DAR models for
conditional spectral estimation. We also discuss a different asynchronous parametrization
with a more efficient estimation but with a more difficult interpretation.

Then we discuss stability in DAR model. We first recall stability properties of stationary
models, then we derive a stability criterion on slowly-varying systems. We also propose
another parametrization which enforces the instantaneous model to be stable at each
time, and develop an efficient optimization scheme. Finally, we present an experiment
to explore the limit of quickly-varying drivers in DAR models.

This chapter covers the following publication:

• Dupré la Tour, T., Grenier, Y., and Gramfort, A. (2017a). Parametric estimation
of spectrum driven by an exogenous signal. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4301–4305
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2.1 Driven autoregressive models

2.1.1 Model definition

Let y be a univariate locally stationary signal, as defined in Dahlhaus (1996). An
auto-regressive (AR) model specifies that y depends linearly on its own p past values,
where p is the order of the model:

∀t ∈ Jp+ 1, T K y(t) +
p∑
i=1

aiy(t− i) = ε(t) . (2.1)

Here, T is the length of the signal and ε is the innovation (or residual) modeled with a
Gaussian white noise: ε(t) ∼ N (0, σ2). To extend this AR model to a non-linear model,
one can assume that the AR coefficients ai are non-linear functions of a given exogenous
signal x, here called the driver :

∀i ∈ J1, pK ai(t) = gi(x(t)) . (2.2)

In TAR models (Tong and Lim, 1980), gi(x) is a piecewise constant function. In
EAR models (Haggan and Ozaki, 1981), it is a sum of negative squared exponential
ai(x) = bi +

∑m
k=0 aike

−γkx
2 . In STAR models (Chan and Tong, 1986), it is a sum of

sigmoid functions ai(x) =
∑m
k=0 aik(1 + e−γk(x−ck))−1.

As proposed in Grenier (2013), we will consider the non-linear functions gi as polynomials:

gi(x) =
m∑
k=0

aikx
k , (2.3)

where xk is x to the power k. Inserting the time-dependent AR coefficients (2.3) into
the AR model (2.1), we obtain the following equation:

∀t ∈ Jp+ 1, T K y(t) +
p∑
i=1

m∑
k=0

aikx(t)ky(t− i) = ε(t) . (2.4)

This can be simplified and rewritten as:

∀t ∈ Jp+ 1, T K y(t) +A>Ỹ (t) = ε(t) , (2.5)

where A ∈ Rp(m+1) is a vector composed of the scalars aik and Ỹ (t) ∈ Rp(m+1) is a
vector composed of the regressors x(t)ky(t− i).

We also consider a time-varying innovation variance σ(t)2 driven by x. This corresponds
to the assumption that the power of the signal at time t depends on the driver at this
same instant. Since the standard deviation is necessarily positive, we use the following
polynomial model for its logarithm:

∀t ∈ Jp+ 1, T K log(σ(t)) =
m∑
k=0

bkx(t)k = B>X(t) , (2.6)

where B ∈ Rm+1 is a vector composed of the scalars bk, and X(t) ∈ Rm+1 is a vector
composed of the successive powers x(t)k.

We call this model a driven auto-regressive (DAR) model.
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2.1.2 A polynomial parametrization

The first benefit of a polynomial parametrization is that the model estimation is
computationally very efficient, as described in Subsection 2.1.3. In contrast, EAR and
STAR models are more expensive to estimate. Let’s recall for instance the STAR
parametrization (Chan and Tong, 1986, Dijk et al., 2002), where ai(t) is a sum of
sigmoid functions:

∀t ∈ Jp+ 1, T K ai(x) =
m∑
k=0

aik
1 + e−γk(x−ck) . (2.7)

The parameters aik are easy to optimize conditionally to the rest, but there is no
good initialization procedure for the transitions parameters γk and ck. The non-linear
optimization problem may be slow to solve and have several local minima, and the
cost of an initial grid-search is large, or even prohibitive as soon as m ≥ 2, since the
grid-search is in a space of dimension 2m.

Another benefit is the robustness of the estimation, since DAR models use the entire
signal to estimate the coefficients. In contrast, a more general approach is to parametrize
with piecewise constants functions, such as in functional AR (FAR) models (Chen and
Tsay, 1993) and multistate TARX models (Tong, 2011). To estimate a piecewise constant
AR parametrization with s-steps, the authors divide the driver’s values into s equally
distributed bins, then they fit s independent linear AR models on the time samples of
each bin. This estimation is very fast, yet each AR model uses only T/s samples, whereas
the polynomial approach uses all the T samples. The polynomial parametrization also
uses fewer coefficients since a low order m is sufficient. DAR models are therefore more
robust.

To illustrate the choice of a polynomial parametrization, we compared the functions
ai(x) on an empirical ECoG signal recorded on the human auditory cortex (see datasets
details in Subsection 3.1.5). We compared three parametrizations of these functions:
two piecewise constant functions with respectively s = 7 and s = 25 steps, and one
polynomial function with order m = 2, as used in the rest of this work. The models
are fitted using p = 12. We see that an order-2 polynomial is sufficient to approximate
the trend of both the AR coefficients and the innovation variance, as estimated by the
piecewise constant functions. Yet the polynomial uses much fewer coefficients, since the
polynomial uses (p+ 1)(m+ 1) = 39 coefficients, while the piecewise constant functions
use (p+ 1)(s+ 1) = 91 (resp. 325) coefficients for s = 7 (resp. 25).

2.1.3 DAR models estimation

Estimation of A DAR model equation (1.4) is non-linear with respect to the given
signals x and y, yet it is linear with respect to the regressors x(t)ky(t− i). Therefore
after computing the regressors, it is possible to obtain an analytical expression of the
parameters in A.
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(b) Innovation variance σ2(x) as functions of the driver x. The gray circles are the mean
squared-residual over 100 bins of the driver values.

Figure 2.1 – Empirical validation of the polynomial basis in DAR models. The polynomial
parametrization of DARmodels seems sufficient to model the trajectory of AR coefficients.
It also uses much fewer degrees of freedom than piecewise-constant parametrizations.

Indeed, as the innovation ε(t) is assumed to be a Gaussian white noise, the model
likelihood L is obtained via:

L =
T∏

t=p+1

1√
2πσ(t)2

exp

− ε(t)2

2σ(t)2

, (2.8)

or −2 log(L) = T log(2π) +
T∑

t=p+1

ε(t)2

σ(t)2 + 2
T∑

t=p+1
log(σ(t)).

We estimate DAR models with a maximum likelihood estimate (MLE). Here, if the
innovation variance σ(t)2 is considered fixed, maximizing L boils down to minimizing
the sum of squares of ε(t). Since ε(t) is the residual, the inference of the parameters
amounts to maximizing the variance explained by the model. To start the maximization,
we first assume that the innovation variance is fixed and equal to the signal’s empirical
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variance. The likelihood then reads:

−2 log(L) = C +
T∑

t=p+1

ε(t)2

σ(t)2 = C +
T∑

t=p+1

1
σ(t)2

(
y(t) +A>Ỹ (t)

)2
, (2.9)

where C is a constant. We can thus estimate the DAR coefficients A ∈ Rp(m+1) by
solving the following linear system (a.k.a. normal equations): T∑

t=p+1

1
σ(t)2 Ỹ (t)Ỹ (t)>

 Â = −

 T∑
t=p+1

1
σ(t)2 Ỹ (t)y(t)

 . (2.10)

The complexity of forming the linear system is O(Tp(m+ 1)), and the complexity of
solving the system is O(p3(m+ 1)3), which is very fast since p is usually below 50, and
m below 2.

Side note A common practical situation is to estimate all the models of order lower or
equal to p, and to select the best model according to a specific criterion (see Section 3.2).
In this case, a way to speed up the previous computation would be to use the matrix
inversion lemma, also known as the Woodbury matrix identity (Woodbury, 1950):

(A+ CBC>)−1 = A−1 −A−1C(B−1 + C>A−1C)−1C>A−1 (2.11)

where A ∈ Ra×a, B ∈ Rb×b and C ∈ Ra×b. Using this formula, we could estimate the
coefficients at order p, Â(p), using the coefficients at previous order Â(p−1), which only
costs O((p− 1)2(m+ 1)3). Therefore, we could estimate all models of order lower or
equal to p for the same computational price as the last one. However, we do not use
this method in practice, since we witnessed that accumulating numerical errors across
orders would sometimes cause the estimate to diverge.

Estimation of B Given Â, one can then estimate the vector B ∈ Rm+1 from the
residual ε(t), maximizing the likelihood using off-the-shelf optimization techniques
adapted to differentiable problems. In practice, we use a Newton procedure, since the
gradient and Hessian of the log-likelihood are easily obtained:

∂ logL
∂bk

=
T∑

t=p+1

 ε(t)2

σ(t)2 − 1

x(t)k (2.12)

∂2 logL
∂bk∂bk′

= −2
T∑

t=p+1

ε(t)2

σ(t)2x(t)k+k′ (2.13)

To give a good initialization of the Newton procedure, we use the following heuristic. We
first sort the driver values {x(t)}Tt=1, and split them into S = 3(m+1) equally populated
bins {Xs}Ss=1. Then, we compute the median driver value on each bin x̃s = median(Xs).
We also define the set of time points corresponding to each bin Ωs = {t : x(t) ∈ Xs},
and compute the mean squared residual on each of these sets ṽs = meant∈Ωs(ε(t)2).

We now have a set of S couples (x̃s, ṽs), which sample the function σ2 : x̃s 7→ ṽs. To
obtain a feasible approximation by our polynomial parametrization (and obtain B̂),
we perform a linear regression of log(ṽ) on the basis [1, x, . . . , xm]. This procedure
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Algorithm 2.1: Estimation of DAR models.
Input : Signal y, driver x, orders (p,m), number of iterations n
Initialize σ(t) with σ(t)2 = 1/(T − p− 1)

∑T
t=p+1(y(t)− ȳ)2,

for i = 1 to n do
Estimate the coefficients A with (2.10),
Compute ε(t) with (2.4),
Initialize B with the binning heuristic,
Refine B with a Netwon procedure, using (2.12) and (2.13),
Update σ(t) with (2.6),

return (A,B)

gives us a good guess of the solution, making the Newton algorithm converge in few
iterations.

Given such an estimate B̂, we can update the instantaneous variance σ(t)2 using (2.6).
One can then iterate between the estimations of the coefficients A and B. In our
experiments, we observed that one or two iterations are sufficient. The algorithm is
summarized in Algorithm 2.1.

2.1.4 Model’s power spectral density

AR models are mainly used for spectral estimation. Indeed, since an AR model is a
linear filter that whiten a particular signal y, the power spectral density (PSD) of this
filter is close to the inverse of the PSD of the signal, providing a parametric spectral
estimation of the signal. For a linear AR model, the PSD at a frequency f is given by:

PSD(f) = σ2

∣∣∣∣∣∣
p∑
i=0

aie
−2jπfi

∣∣∣∣∣∣
−2

, (2.14)

where j2 = −1 and a0 = 1. This estimation is perfect when p → ∞, but in practice,
using p ∈ J10, 100K gives satisfying results in most applications.

In the case of DAR models, the PSD is a function of the driver’s value x, so we note
it PSD(x). For a given complex driver’s value x(t0), we compute the associated AR
coefficients ai(t0) using (2.2), along with the associated innovation’s standard deviation
σ(t0) using (2.6). Since AR models with time-varying coefficients are locally stationary
(Dahlhaus, 1996), we can compute the PSD at a frequency f with:

PSD(t0)(f) = σ(t0)2

∣∣∣∣∣∣
p∑
i=0

ai(t0)e−j2πfi
∣∣∣∣∣∣
−2

. (2.15)

We thus have a different PSD for each driver value x(t0), i.e. for each time instant,
as the driver fluctuates in time. We illustrate this conditional PSD in Figure 2.2,
where we plot the PSD for different value of x. The four panels correspond to four
models, with fixed or driven AR coefficient ai, and fixed or driven innovation’s standard
deviation σ. We see how the varying AR coefficients ai(t) parametrize the fluctuations
of the PSD, whereas the varying innovation’s standard deviation σ(t) is responsible
for the absolute fluctuations in power over all frequencies. Interestingly, when both
are driven by x, the two effects cancel each other in the non-modulated frequency
bands (e.g. [120− 166]Hz). The model were fitted on rodent striatal LFP recordings
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(see datasets details in Subsection 3.1.5), using (p,m) = (17, 2). We used the fast
Fourier transform (FFT) in (2.15) to compute the PSD for a broad range of frequencies
f ∈ [0, fs/2] very quickly.

Figure 2.2 – Power spectral densities of different models. (a) With fixed ai and fixed σ.
(b) With fixed ai and driven σ(x). (c) With driven ai(x) and fixed σ. (d) With driven
ai(x) and driven σ(x). Each colored line corresponds to a particualr driver value. The
black dashed lines is the PSD computed with a Welch method (Welch, 1967).

2.1.5 An asynchronous parametrization

Let’s recall the proposed DAR parametrization:

∀t ∈ Jp+ 1, T K y(t) +
p∑
i=1

m∑
k=0

aikx(t)ky(t− i) = ε(t) . (2.16)

We see that the driver is synchronous with the AR model, in the sense that at time t,
the AR model only depend on x(t). We also studied another parametrization, where
the driver’s effect is asynchronous:

∀t ∈ Jp+ 1, T K y(t) +
p∑
i=1

m∑
k=0

aikx(t− i)ky(t− i) = ε(t) . (2.17)

We call this model an asynchronous DAR model.

Asynchronous DAR models are slightly more difficult to interpret than DAR models,
since the relationship between the PSD and the driver is not instantaneous, and in the
rest of this work, we only used DAR models. However, their parametrization leads to
a faster estimation method, since we can rewrite them into simple vector AR (VAR)
models:

∀t ∈ Jp+ 1, T K Y (t) +
p∑
i=1

AiY (t− i) = ε(t) , (2.18)
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where Ai = [ai0, . . . , aim] and Y (t) = [y(t), y(t)x(t), . . . , y(t)x(t)m]>. VAR models can
be efficiently estimated with Levinson-Durbin recursion (Durbin, 1960), where the linear
system inversion has a complexity of O(n2) instead of O(n3) (with n = p(m+ 1)). This
complexity improvement can be critical for large models, but as we used models with
limited size (p(m+ 1) < 200), we preferred to keep the interpretability of synchronous
DAR models.

2.2 Stability in DAR models
In this section, we discuss stability in DAR models. We first recall standard stability
definitions and criteria for stationary AR models. We then extend them to non-stationary
AR models, assuming that all instantaneous AR models are stable, and that the system
is slowly varying. Finally, we describe an alternative DAR parametrization, which forces
all instantaneous AR models to be stable. For these models, we propose an efficient
estimation scheme based on a Netwon procedure with a good initialization.

2.2.1 Stability in stationary models

Let’s first define the notion of stability:

Definition 2.1. (Rugh, 1996, Definition 6.5)
Suppose a non-stationary linear system:

X(t+ 1) = A(t)X(t), X(t0) = X0, (2.19)

where X ∈ Rn is a state vector, and A ∈ Rn×n is a transition matrix.
This system is called uniform exponentially stable if there exist γ > 0, λ > 0 such that
for any t0 and X0, the solution satisfies:

‖X(t)‖ ≤ γe−λ(t−t0)‖X0‖. (2.20)

Another notion of stability can also be used in the context of input-output systems:

Definition 2.2. (Rugh, 1996, Definition 12.1)
Suppose a non-stationary linear system:

X(t+ 1) = A(t)X(t) +B(t)U(t), X(t0) = X0,

Y (t) = C(t)X(t). (2.21)

where X ∈ Rn is a state vector, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are transition
matrices, U ∈ Rm is the input vector, and Y ∈ Rp is the output vector.
This system is called uniform bounded-input bounded-output (BIBO) stable if there
exists a finite η > 0 such that for any input signal U(t), the solution satisfies:

sup
t≥t0
‖Y (t)‖ ≤ η sup

t≥t0
‖U(t)‖. (2.22)

Filter poles A standard way to estimate stability in (stationary) AR models is to
compute the poles of the AR linear filter H(z) = σ2/P (z) with P (z) = 1 +

∑p
i=1 aiz

−i.
A linear filter is stable if and only if all its poles λi are strictly inside the unit disk:
∀i ∈ [1, p], |λi| < 1. However, poles computation can be quite expensive, and we do not
use this method in practice.
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Lattice representation Another standard technique to assess stability in AR models
is to consider the partial correlation coefficients kp, introduced in the fast Levinson-
Durbin algorithm (Durbin, 1960). This algorithm estimates the ai coefficients recursively
from previous orders: the ai at order p (noted here a(p)

i ) can be computed from kp and
from the AR coefficients at previous order a(p−1)

i :

a(p)
p = kp; ∀i ∈ J1, p− 1K, a(p)

i = a
(p−1)
i + kpa

(p−1)
p−i . (2.23)

Therefore, considering the sets {ai}pi=1 and {ki}pi=1, the knowledge of one set allows to
compute the other. The latter is called the lattice representation, and brings a simple
necessary and sufficient condition for stability (Makhoul, 1977):

∀i ∈ J1, pK −1 < ki < 1. (2.24)

This criterion is very useful, as the standard lattice parameter estimations naturally
lead to parameters in that range. We will also use this criterion in Subsection 2.2.3 to
define locally stable DAR models.

Estimation of lattice parameters The lattice parameters are generally estimated
through the forward and backward residuals ε+ and ε−. At the output of the i-th lattice
cell, the residuals are given by:

∀i ∈ J1, pK
∀t ∈ Ji+ 1, T K

 ε+
i (t) = ε+

i−1(t) + kiε
−
i−1(t− 1),

ε−i (t) = ε−i−1(t− 1) + kiε
+
i−1(t),

(2.25)

where we initialize with ε+
0 (t) = ε−0 (t) = y(t). Let’s also define the following quantities:

∀i ∈ J1, pK Ci = E[ε+
i (t)ε−i (t− 1)], (2.26)

∀i ∈ J1, pK Fi = E[ε+
i (t)2], (2.27)

∀i ∈ J1, pK Bi = E[ε−i (t)2], (2.28)

where E[x(t)] is the expected value of x(t). To estimate the lattice parameter ki of cell
i, several methods exist (Makhoul, 1977):

• Minimizing Fi leads to kfi = −Ci−1/Bi−1

• Minimizing Bi leads to kbi = −Ci−1/Fi−1

• Minimizing Fi +Bi leads to kfbi = −2Ci−1/(Fi−1 +Bi−1)
• Another common definition is ksi = −Ci−1/

√
Fi−1Bi−1 (not linked to a least square

minimization)

The last two definitions guarantee stability since |kfbi | ≤ |ksi | < 1 (Makhoul, 1977).

State-space representation Another way to assess stability is to write an AR model
through a state-space representation:

X(t+ 1) = AX(t) +Bε(t), (2.29)
y(t) = CX(t). (2.30)

where A ∈ Rp×p, B ∈ Rp×1, C ∈ R1×p, X(t) ∈ Rp×1, y(t) ∈ R, and ε(t) ∈ R.



46 CHAPTER 2. DRIVEN AUTOREGRESSIVE MODELS

Such a state-space model is stable if and only if the spectral radius of A is strictly lower
than 1, i.e. all the eigenvalue of A are in the interior of the unit disk. This holds for
both uniformly exponentially stable (Rugh, 1996, Theorem 22.11) and uniformly BIBO
stable (Rugh, 1996, Theorem 27.9).

The stationary AR model is equivalent to two canonical forms of state-space representa-
tion: the observable and the controllable form.

The observable canonical form is:

A(t) =



−a1 1 0 · · · 0

−a2 0 1 . . . 0
...

... . . . . . . ...
−ap−1 0 · · · 0 1
−ap 0 · · · 0 0


, B(t) =



σ(t)2

0
...
0
0


, C(t)> =



1
0
...
0
0


, (2.31)

and the controllable canonical form is:

Ā(t) =



−a1 −a2 · · · −ap−1 −ap
1 0 · · · 0 0

0 1 . . . 0 0
... . . . . . . 0

...
0 0 · · · 1 0


, B̄(t) =



1
0
...
0
0


, C̄(t)> =



σ(t)2

0
...
0
0


.

(2.32)

The eigenvalues of A are the roots of the polynomial:

det(λIp −A) = λp +
p∑
i=1

aiλ
p−i, (2.33)

where we recognize the AR filter polynomial P (λ) multiplied by λp. We see that this is
nothing more than considering the poles of the linear AR filter. A is sometime called
the companion matrix of P , as its characteristic polynomial is P . Note that in the
stationary case, A = Ā>, so both characteristic polynomials are identical. We will use
this representation in the next subsection to discuss stability in non-stationary AR
models.

2.2.2 Stability in non-stationary AR models

Counter-examples The stability properties described in the previous section are
only valid in stationary AR models. In particular, the overall system might be unstable
even though all instantaneous filters are stable. For instance, in the case of state-space
systems, we have the counter-example (Rugh, 1996, Example 24.1):

A(t) =



 0 2
1/4 0

 , if t is odd,
 0 1/4

2 0

 , if t is even.
(2.34)

This system is not stable, yet the poles ±1/
√

2 are inside the unit disk at all time.
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Properties of slowly-varying linear systems In order to cope with stability in
non-stationary AR models, we will make use of the following results:

Theorem 2.3. (Desoer, 1970) or (Rugh, 1996, Theorem 24.8)
Suppose a non-stationary linear system:

X(t+ 1) = A(t)X(t), X(t0) = X0. (2.35)

Suppose that there exists α > 0 and 0 ≤ µ < 1 such that for all t ‖A(t)‖ ≤ α and
for all eigenvalues λi(t) of A(t), |λi(t)| ≤ µ. Then there exists β > 0 such that if
‖A(t+ 1)−A(t)‖ < β for all t, then the system (2.35) is uniformly exponentially stable.

In other words, if the system is bounded and instantaneously stable at all time, with
poles poles bounded away from the unit circle, and if the system is varying sufficiently
slowly, then we have uniform exponential stability. This result is complemented by the
following theorem:

Theorem 2.4. (Rugh, 1996, Theorem 27.4)
Suppose a non-stationary linear system:

X(t+ 1) = A(t)X(t) +B(t)u(t), X(t0) = X0,

y(t) = C(t)X(t). (2.36)

If the system is uniformly exponentially stable, and if ‖B(t)‖ ≤ γ and ‖C(t)‖ ≤ ζ for
all t, then (2.36) is also uniformly BIBO stable.

This theorem extends uniform exponential stability to uniform BIBO stability, under
appropriate bounding hypotheses. To apply these two theorems to non-stationary AR
models, we will also use a result on perturbed systems:

Theorem 2.5. (Rugh, 1996, Theorem 24.7)
Suppose a non-stationary linear system:

X(t+ 1) = A(t)X(t), X(t0) = X0. (2.37)

If the system is uniformly exponentially stable, then there exists β > 0 such that for a
perturbation F ∈ Rp×p, if sup ‖F (t)‖ ≤ β, then the perturbed system:

X(t+ 1) = (A(t) + F (t))X(t), X(t0) = X0, (2.38)

is uniformly exponentially stable.

Essentially, this theorem states that uniform exponential stability is still valid on a
neighborhood of the system.

Stability in non-stationary AR models Given previous theorems, let’s go back
to the observable state-space representation of the non-stationary AR model:

A(t) =



−a1(t+ 1) 1 0 · · · 0

−a2(t+ 2) 0 1 . . . 0
...

... . . . . . . ...
−ap−1(t+ p− 1) 0 · · · 0 1
−ap(t+ p) 0 · · · 0 0


, B(t) =



σ(t)2

0
...
0
0


, C(t)> =



1
0
...
0
0


.

(2.39)
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Importantly, this observable representation is equivalent to the non-stationary AR model
(Grenier, 1984) (but not the controllable one). Let’s assume we have a non-stationary
AR model whose instantaneous AR models are stable at all time. We can be tempted to
use the Theorem 2.3 and Theorem 2.4, so as to prove uniform exponential and uniform
BIBO stability. However, one can see that the polynomial is not the same as in the
instantaneous filter:

P (t, z) = 1 +
p∑
i=1

ai(t)z−i, (2.40)

det(λiIp −A(t)) = λp +
p∑
i=1

ai(t+ i)λp−i. (2.41)

In the first we have ai(t), and in the second ai(t + i). Thus, even if the poles of the
instantaneous filter are in the unit disk for all time, the poles of A(t) can be outside the
unit disk (see an example in (Grenier, 1984, Part 2 - Annexe 8)).

However, we can assume that if the ai(t) are changing slowly, the roots of both polyno-
mials should be close. This assumption is not trivial, since polynomial’s roots can be
very sensitive to a variation in polynomial’s coefficients (e.g. Wilkinson’s polynomial
(Wilkinson, 1984)).

In order to evaluate the variations of the roots of the two polynomials, let’s define a
new matrix Ã:

Ã(t) =



−a1(t) 1 0 · · · 0

−a2(t) 0 1 . . . 0
...

... . . . . . . ...
−ap−1(t) 0 · · · 0 1
−ap(t) 0 · · · 0 0


, (2.42)

and the perturbation matrix:

F (t) = A(t)− Ã(t) =


a1(t)− a1(t+ 1) 0 · · · 0

...
... . . . ...

ap(t)− ap(t+ p) 0 · · · 0

 . (2.43)

Under necessary hypotheses, Theorem 2.3 states that the system X(t+ 1) = Ã(t)X(t)
is uniformly exponentially stable. Then Theorem 2.5 states that if ‖F (t)‖ is sufficiently
small, i.e. the coefficients ai(t) vary sufficiently slowly, then the system X(t + 1) =
A(t)X(t) = (Ã(t) + F (t))X(t) is also uniformly exponentially stable. With appropriate
hypotheses, Theorem 2.4 extends it to uniform BIBO stability.

In other words, if the non-stationary AR model is instantaneously stable at all time,
with poles bounded away from the unit circle, and if the system is varying sufficiently
slowly, then the overall system is stable.
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Controllable form

Note that in non-stationary AR models, the controllable canonical form uses

Ā(t) =



−a1(t) −a2(t) · · · −ap−1(t) −ap(t)
1 0 · · · 0 0

0 1 . . . 0 0
... . . . . . . 0

...
0 0 · · · 1 0


, (2.44)

which involves the same poles than the instantaneous AR filter, which could be promising.
However, there is no equivalence between the controllable form and the AR representation
in the general case. A sufficient condition for equivalence is if this form is also observable
(Grenier, 1984, Part 1 - Chapter 3 - Section 4.2.3).

Variant: non-instantaneous DAR models Let’s recall that in niDAR models, we
have changed the coefficients ai(t) into ai(t − i). Then the observable state-space is
changed into:

A(t) =



−a1(t) 1 0 · · · 0

−a2(t) 0 1 . . . 0
...

... . . . . . . ...
−ap−1(t) 0 · · · 0 1
−ap(t) 0 · · · 0 0


, B(t) =



σ(t)2

0
...
0
0


, C(t)> =



1
0
...
0
0


.

(2.45)
Here we have a more instantaneous spectrum for A(t). However, this asynchronous AR
parametrization is not compatible with the log-area ratios described in next subsection,
so we are unable to guarantee the poles of the instantaneous filter to be strictly inside
the unit disk.

2.2.3 Stable DAR models definition

In previous subsection, we use the hypothesis that the instantaneous AR models are
stable at each time. However, this is not a property of DAR models presented earlier.
In fact, the polynomial functions ai(x) are not bounded, so a large driver value x(t) can
easily lead to an unstable AR model. This is not a problem if we use DAR models only
for analysis, but can be an issue if we use fitted DAR models to generate new signals.

To tackle this issue, we present here a different parametrization based on Grenier and
Omnes-Chevalier (1988), which uses lattice coefficients (c.f. Section 2.2.1), and log-area
ratios (Wakita, 1973), which were developed in acoustic models of the physics of sound
propagation in the vocal tract.

First, let’s recall the correspondence between AR coefficients and lattice coefficients:

a(p)
p = kp; ∀i ∈ J1, p− 1K, a(p)

i = a
(p−1)
i + kpa

(p−1)
p−i . (2.46)

We can define a different non-stationary parametrization, where the ki(t) are directly
driven by the exogenous signal x, instead of the ai(t):

∀i ∈ J1, pK ki(t) =
m∑
j=0

kijx(t)j = K>i X(t). (2.47)
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This parametrization is used as an intermediate step during model estimation. We recall
that such lattice representation brings a simple condition (necessary and sufficient) for
stability: −1 < ki < 1 (Benesty et al., 2007). To enforce this condition, we use the
log-area ratios γi (Wakita, 1973), as suggested in (Grenier and Omnes-Chevalier, 1988):

γi = log
(

1 + ki
1− ki

)
⇐⇒ ki = eγi − 1

eγi + 1 . (2.48)

We use the log-area ratios coefficients γi(t) in order to force the ki(t) to be within ]−1, 1[,
which enforces the stability of the instantaneous model for all t. The corresponding
non-stationary parametrization is:

∀i ∈ J1, pK γi(t) =
m∑
j=0

γijx(t)j = Γ>i X(t). (2.49)

We call this model a stable DAR model. Note that this parametrization only enforces
stability of each instantaneous AR models. The global stability is only given for models
which are varying sufficiently slowly.

2.2.4 Stable DAR models estimation

Once again, we estimate the log-area ratios coefficients Γi by maximizing the likelihood.
As in DAR models, we first assume that the innovation variance is constant: σ(t)2 = σ2,
and equal to the signal’s empirical variance. Then, we maximize the likelihood iteratively
from order 1 to order p, by adding each time a lattice cell. So for each lattice cell
from i = 1 to p, we estimate the log-area ratios coefficients Γi ∈ Rm+1 by minimizing a
least-square criterion over the forward and backward residuals:

J(Γi) =
T∑

t=i+1

ε+
i (t)2 + ε−i (t)2

σ(t)2 , (2.50)

where the forward and backward residuals at the output of the i-th lattice cell are given
by (as (2.25)):

∀i ∈ J1, pK
∀t ∈ Ji+ 1, T ]K

 ε+
i (t) = ε+

i−1(t) + kiε
−
i−1(t− 1),

ε−i (t) = ε−i−1(t− 1) + kiε
+
i−1(t).

(2.51)

Note that maximizing the likelihood corresponds to minimizing the least-square criterion
only on the forward residual. However, minimizing both residual is a standard way to
improve the robustness of the estimation (Makhoul, 1977).

We minimize J(Γi) with a Newton procedure since the gradient and Hessian can be
computed easily.

Gradient The first partial derivative Gi is obtained via:

[Gi]j = ∂J

∂γij
= 2

T∑
t=i+1

1
σ(t)2

ε+
i (t)∂ε

+
i (t)

∂ki(t)
+ ε−i (t)∂ε

−
i (t)

∂ki(t)

 ∂ki(t)
∂γij

(2.52)

= 2
T∑

t=i+1

1
σ(t)2

(
ε+
i (t)ε−i−1(t− 1) + ε−i (t)ε+

i−1(t)
) ∂ki(t)
∂γij

, (2.53)
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with:
∂ki(t)
∂γij

= ∂ki(t)
∂γi(t)

∂γi(t)
∂γij

= 1
2(1− ki(t)2)x(t)j . (2.54)

We can rewrite it in a more compact vector form:

Gi =
T∑

t=i+1

gi(t)
σ(t)2X(t), (2.55)

with:
gi(t) =

(
ε+
i (t)ε−i−1(t− 1) + ε−i (t)ε+

i−1(t)
)

(1− ki(t)2). (2.56)

Since ε+
i (t) and ε−i (t) are not known, we need to express them as functions of ε+

i−1(t)
and ε−i−1(t). These functions are given in (2.51). We have then:

gi(t) =
(
2ε+
i−1(t)ε−i−1(t− 1) + ki(t)(ε−i−1(t− 1)2 + ε+

i−1(t)2)
)

(1− ki(t)2) (2.57)

To evaluate this formula, k̃i(t) is computed from γ̂i(t) = Γ̂>i X(t) with the log-area ratios
formula (2.48).

Hessian The second partial derivative Hi is obtained via:

[Hi]jj′ = ∂2J

∂γij∂γij′
= ∂

∂γij

 T∑
t=i+1

gi(t)
σ(t)2x(t)j′

 (2.58)

=
T∑

t=i+1

1
σ(t)2

∂gi(t)
∂ki(t)

∂ki(t)
∂γij

x(t)j′
, (2.59)

with:

∂gi(t)
∂ki(t)

=
(
2ε+
i−1(t)ε−i−1(t− 1) + ki(t)(ε−i−1(t− 1)2 + ε+

i−1(t)2)
)

(−2ki(t))

+
(
ε−i−1(t− 1)2 + ε+

i−1(t)2
)

(1− ki(t)2). (2.60)

That we can rewrite:

Hi =
T∑

t=i+1

hi(t)
σ(t)2X(t)X(t)>, (2.61)

with:

hi(t) = (1− ki(t)2)((ε−i−1(t− 1)2 + ε+
i−1(t)2)(1− 3ki(t)2)

− 4ε+
i−1(t)ε−i−1(t− 1)ki(t)). (2.62)

Once again, to evaluate this formula, k̃i(t) is computed from γ̂i(t) = Γ̂>i X(t) using the
log-area ratios formula (2.48).
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Initialization To start with a good initialization, we approximate the problem with a
two-step algorithm. In the first step, we solve the linear problem argminKi

J(Ki) using
the lattice parametrization (2.47). It leads to a normal equation: T∑

t=i+1

(ε−i−1(t− 1)2 + ε+
i−1(t)2)

σ(t)2 X(t)X(t)>
K̂i =

−
T∑

t=i+1

2
σ(t)2 ε

+
i−1(t)ε−i−1(t− 1)X(t). (2.63)

In the second step, we estimate Γi with a regression over the trajectories γi(t) and k̂i(t):
After clipping k̂i(t) = K̂>i X(t) inside [−1 + η, 1− η] , with η = 10−6 for example, we
measure the quality of the approximation with a second least-squares criterion:

J2(Γi) =
T∑

t=i+1

Γ>i X(t)− log

1 + k̂i(t)
1− k̂i(t)




2

. (2.64)

Again this linear system leads to a normal equation: T∑
t=i+1

X(t)X(t)>
 Γ̂i =

T∑
t=i+1

X(t) log

1 + k̂i(t)
1− k̂i(t)

 . (2.65)

These two steps are used to initialize the Newton procedure, and largely speed-up the
optimization.

We iterate this optimization over each lattice cell i: For i > 1, the residuals ε+
i (t)

and ε−i (t) are obtained with (2.51) using the k̃i(t) derived from γ̂i(t) = Γ̂>i X(t) using
(2.48). We then obtain the DAR coefficients Γi for every order i from 1 to p. The entire
algorithm is given in Algorithm 2.2.

2.2.5 Model comparison

During our experiments, we compared extensively DAR models, stable DAR models, and
asynchronous DAR models. We did not notice any significant differences in modeling
between DAR models and stable DAR models. Asynchronous DAR models yielded
slightly different likelihood scores with no clear trend, but they were more difficult to
interpret than DAR models.

As an example, we present in Figure 2.3 the PSD of four models, fitted on rodent striatal
LFP recordings (see datasets details in Subsection 3.1.5), using (p,m) = (17, 2). We
compared a standard DAR model as in (2.4), an asynchronous DAR model as in (2.17),
a DAR model with a lattice parametrization as in (2.47), and a stable DAR model as in
(2.49). The PSD are almost identical.

However, the computational costs were quite different (see Table 2.1 for some example
of fitting times). DAR models were the fastest, beating slightly asynchronous DAR
models. Their poorer complexity in p might inverse the trend for large p though. Stable
DAR models were significantly slower.

Due to speed results and non-significant modeling differences, we gradually moved to
using only standard DAR models. In the rest of this manuscript, we only present results
on standard DAR models.
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Algorithm 2.2: Estimation of log-area ratios coefficients Γi in stable DAR models.
Input : Signal y, driver x, orders (p,m), threshold η, threshold h
Compute X = [1, x, . . . , xm] and σ(t),
Initialize ε+

0 = ε−0 = y,
for i = 1 to p do

Step 1: Compute K̂i with normal equation (2.63),
Expand k̂i(t) = K̂>i X(t) for all t ≥ i,
Crop k̂i(t) inside [−1 + η, 1− η] for all t ≥ i,
Step 2: Initialize Γ̂i with normal equation (2.65),
repeat

Expand γ̂i(t) = Γ̂>i X(t) for all t ≥ i,
Compute k̃i(t) using (2.48) and γ̂i(t), for all t ≥ i,
Compute the gradient Gi with (2.55), and the Hessian Hi with (2.61),
Update Γ̂i with a Newton step,

until maxj ∆Γ̂ij < h;
Expand γ̂i(t) = Γ̂>i X(t) for all t ≥ i,
Compute k̃i(t) using (2.48) and γ̂i(t), for all t ≥ i,
Compute ε+

i (t) and ε−i (t) using (2.51), for all t ≥ i,
return {Γ̂i}pi=1

Figure 2.3 – Power spectral densities of different models. All models give extremely
similar results. (a) A DAR model (2.4). (b) An asynchronous DAR model (2.17). (c) A
DAR model with lattice parametrization (2.47). (d) A stable DAR model (2.49). Each
colored line corresponds to a particualr driver value. The black dashed lines is the PSD
computed with a Welch method (Welch, 1967).
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Table 2.1 – Computational fitting times (in seconds) of several models and orders
(p,m), fitted on a long rodent striatal LFP recording with T = 600, 000 points.

Model \ order (17, 1) (17, 2) (100, 1) (100, 2)

DAR 0.19 0.28 1.48 2.53
Asynchronous DAR 0.29 0.44 1.59 2.55
Lattice DAR 0.94 1.41 5.49 7.76
Stable DAR 1.58 2.04 9.20 11.49

2.2.6 Model selection experiment

In Subsection 2.2.2, we describe sufficient conditions for non-linear AR models to be
stable. One of the conditions is that the driver needs to vary sufficiently slowly. On
the one hand, this condition is rather reasonable. On the other hand, we can imagine
examples of stable models with a quickly varying driver. A better question would be:
does extending the stationary AR model really make sense with a quickly-varying driver?
To empirically tackle this question, we developed a simulation study based on model
selection.

Simulations First, we generated a driving signal x for T = 104 time points, by
upsampling a Gaussian white noise of length Tfx/fs (where fs = 103 Hz is the sampling
frequency). Such a driver only contains frequencies below fx.

Then, we created stable DAR models based on the following procedure. We drew a
set of log-area ratios coefficients γi(t) using random walks, starting from a real number
γi(0) ∈]− 1, 1[, and computing γi(t+ 1) = γi(t) + εi(t) with εi(t) ∼ N (0, 0.3). Note that
the log-area ratios coefficients do not need to be in ]−1, 1[ to make the instantaneous AR
models stable (c.f. Subsection 2.2.3). However, to avoid having very large coefficients
during a long period of time, we rescaled the trajectory to be inside [−4, 4]. To make
the log-area ratios coefficients dependent of the driver x, we projected them on the basis
X(t) = [1, x(t), . . . , x(t)m]>:

Γ̂i = argmin
Γi∈Rm+1

T∑
t=1

(Γ>i X(t)− γi(t))2. (2.66)

With the obtained stable DAR coefficients Γ̂i, we computed the instantaneous log-area
ratios γ̃i(t) = Γ̂iX(t), and the corresponding lattice coefficients k̃i(t). We generated a
signal y(t) by feeding the lattice filters with a Gaussian white noise. To focus only on
the spectral fluctuations, we used a constant innovation gain: σ(t) = σ.

We repeated this procedure 100 times, generating 100 signals from 100 DAR models
with p = 10 and m ∈ [0, 1, 2]. We also tested it for different driver’s maximal frequency
fx.

Model selection Then, on each simulated signal, we fitted multiple stable DAR
models on y, using the true driver x, with p ∈ [1, 20] and m ∈ [0, 3]. We used the
Bayesian information criterion (BIC) to select the best model and the corresponding
best hyper-parameters are noted p̂ and m̂. Model selection is described in details in
Section 3.2.
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Figure 2.4 – Model selection with the Bayesian information criterion (BIC). The graphs
show the proportion of each m̂ selected, with respect to the driver’s frequency. We
simulated 100 signals from 100 DAR models with p = 10 and m = 0 (left), m = 1
(middle), m = 2 (right). We then estimated some DAR models on these signals, and we
selected p̂ and m̂ that minimized the BIC. The graphs show the proportion of each m̂
selected. The hyper-parameter m is correctly estimated in most cases if the driver’s
frequency is not too high (fx < 50Hz).

Results The results are presented in Figure 2.4, where we show the proportion on
each m̂ selected by the BIC, for different driver’s maximal frequencies, and different
true parameter m.

For m = 0, the BIC selects the correct order m̂ = 0 on 100% of the simulations. In
other words, with signals simulated with AR models, DAR models might better fit the
signals since they have more degrees of freedom than AR models, but the BIC, which
penalizes model complexity, correctly selects AR models (m̂ = 0).

For m = 1 and m = 2, we can see that for low driver’s frequency, i.e. for slowly-varying
drivers, the BIC selects the correct m in most cases. However, for high driver’s frequency,
i.e. for quickly-varying drivers, the BIC selects m̂ = 0, which corresponds to a stationary
AR model. Importantly, this happens on signals simulated with DAR models, and fitted
with the true drivers. These results empirically demonstrate that using DAR models
with quickly-varying drivers hardly makes sense, and that stationary AR models can be
preferred.

Note that when the driver’s frequency is too low, the BIC sometimes overestimates m
since the time length is too short to see many driver’s oscillations. The BIC also selects
p correctly at ±2 (not shown) for all driver’s frequencies.
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DAR models and phase-amplitude

coupling
“Then you will say to them
“Yes, the stars always make me laugh!”
and they will think you are crazy.”

– Antoine de Saint-Exupéry
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In this chapter, we propose to use DAR models defined in the previous chapter to
capture and characterize phase-amplitude coupling (PAC) in neurophysiological time-
series. Indeed, these models are especially designed to capture spectral fluctuations
coupled with a slowly-varying signal.

We first show how to adapt DAR models to analyze PAC. Then we describe in details
how to perform model selection, a unique feature of PAC analysis with DAR models.
Finally, we discuss statistical significance and robustness of PAC analysis with DAR
models. Our method is fully available as an open source package that comes with
documentation, tests, and examples: https://pactools.github.io.

This chapter covers the following publication:

• Dupré la Tour, T., Tallot, L., Grabot, L., Doyère, V., van Wassenhove, V., Gren-
ier, Y., and Gramfort, A. (2017b). Non-linear auto-regressive models for cross-
frequency coupling in neural time series. PLOS Computational Biology, 13(12)

https://pactools.github.io
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3.1 DAR models and PAC

3.1.1 Preprocessing

In this section, we describe the preprocessing applied to the raw signal z to obtain
the driver x and the signal y. The raw signal z is a univariate signal, for instance one
channel of an ECoG recording.

Figure 3.1 – Example of a preprocessed signal. The driver x is extracted from the raw
signal z with a bandpass filter, and then subtracted from z to give y. A PAC effect is
present as we see stronger high frequency oscillations at the peaks of the driver. The
signal y is presented here as it looks before the temporal whitening step.

First, the raw signal is down-sampled to an appropriate sampling frequency fs (we used
333Hz and 625Hz in our examples), as we only consider frequencies up to fs/2. Then,
power line noise and its harmonics are removed as follow. As power line frequency
fluctuates over time, we decompose the signal in chunks of 5 seconds. On each chunk, the
power line frequency is estimated by projecting the signal onto multiple sinusoids, and
the maximum-power projection is subtracted from the raw signal. When necessary, we
also use a high-pass filter to detrend the signal (Bigdely-Shamlo et al., 2015), typically
at 1Hz.

A bandpass filter is then used to extract the driver x. The choice of center frequency fx
and bandwidth ∆fx of this filter will be discussed in details in Subsection 3.2.2. The
filter equation is:

w(t) = b(t) cos(2πfxt) , (3.1)

where b(t) is a Blackman window of order b1.65 ∗ fs/∆fxc ∗ 2 + 1, chosen to have a
bandwidth of ∆fx at −3 dB. In other words, the filter attenuation is 50% at fx±∆fx/2.
Importantly, the filter is zero-phase since it is symmetric.

Then, the driver x is subtracted from the raw signal z to create the modeled signal
y = z − x. Note that the signal y now contains a frequency gap around fx, which can
be a nuisance for the AR estimate that provides a compact model for the broad band
power spectrum density of the signal. To solve this issue, we fill this gap by adding a
Gaussian white noise filtered with the same filter w, and adjusted in energy to have a
smooth power spectral density (PSD) in y. Such a preprocessing step is also commonly
used when working with vector auto-regressive models (VAR) on neurophysiological
signals corrected for power line noise.

Finally, we whiten y with a linear AR model, by applying the inverse AR filter to the
signal. This temporal whitening step is not necessary, yet it reduces the need for high
order p in DAR and therefore reduces both the computational cost and the variance of
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the model. After this whitening step, the PSD of y is mostly flat, and DAR models only
contain the modulation of the PSD. Figure 3.1 shows a time sample of a preprocessed
signal, taken from a rodent striatal LFP signal (see datasets details in Subsection 3.1.5).
One can see how the slowly varying driving signal follows the original raw signal and
how the high frequencies bursting on the peak of the slow oscillation remain in the
processed signal y. The general processing pipeline is summarized in Figure 3.2 (a).

In the case of analyzing PAC between two different channels A and B, we can simply
perform the previous steps on both raw signals zA and zB, and fit a DAR model on yA
driven by xB. It could also be possible to not subtract xA from zA, if the low frequency
bands xA and xB are assumed to be uncorrelated, which might not be the case. In such
cases, the other preprocessing steps should still be performed on zA.

Figure 3.2 – Pipeline, signals, conditional PSD, and comodulograms. (a) Pipeline of the
method. We applied it with (p,m) = (10, 1) on two simulated signals: (b) Simulated
signal with PAC and (c) Simulated signal without PAC. (d) From a fitted model,
we computed the PSD conditionally to the driver’s phase φx; each line is centered
independently to show amplitude modulation. PAC can be identified in the fluctuation
of the PSD as the driver’s phase varies: around 50Hz, the PSD has more power for
one phase than for another. This figure corresponds to a single driver’s frequency
fx = 3.0Hz. (e) Applying this method to a range of driver’s frequency, we build a
comodulogram, which quantifies the PAC between each pair of frequencies.
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3.1.2 Phase invariant parametrization

Let’s denote by φ0 the preferred phase of the coupling, i.e. the phase of the driver that
corresponds to the maximum amplitude of the high frequencies. When φ0 = 0, the high
frequency bursts happen in the peaks of the driver, whereas when φ0 = π, they happen
in the troughs.

The driver extracted as described in previous subsection is real-valued, and the filter
used to extract it is based on a cosine. As the cosine has the same value for φ and
π − φ, the PAC estimation is biased and underestimated when φ0 is not equal to 0
or π. Indeed, the model mixes the contribution of φ and π − φ, which attenuates the
modulation effect. This bias was already reported in PAC estimation by (Bruns and
Eckhorn, 2004), and the solution proposed by (Penny et al., 2008) was to use both
cosine and sine to have PAC estimates that are invariant to the preferred phase φ0.

The same technique can be used on DAR models. To do so, we not only filter the raw
signal with w1(t) = b(t) cos(2πfxt) to obtain x1, but also with w2(t) = b(t) sin(2πfxt)
to obtain x2, creating a complex-valued driver x = x1 + jx2 where j denotes a complex
number, j2 = −1. With a complex-valued driver, DAR models are naturally extended
by adding more regressors:

∀i ∈ [1, p] ai(t) =
∑

0≤k+l≤m
aikl x1(t)kx2(t)l . (3.2)

Note that we not only add the powers of x2, but also the cross-terms x1x2, x2
1x2, etc.

Indeed, cross-terms turned out to be critical to properly remove the bias when m ≥ 2.
The only case that does not need cross-terms to correctly remove the bias is the case
m = 1.

Instead of p(m + 1) regressors, we now have p(m + 1)(m + 2)/2 regressors, and the
number of degrees of freedom of the model is now d = (p+ 1)(m+ 1)(m+ 2)/2. Typical
values for m are below 3, so the number of parameters stays within a reasonable range
despite the squared dependence in m. Note that it remains much lower than the number
of time samples and the estimation problem stays therefore well-posed. The innovation
variance model is also updated accordingly:

log(σ(t)) =
∑

0≤k+l≤m
bkl x1(t)kx2(t)l . (3.3)

To validate this parametrization, we simulated some signals containing PAC, as described
in Subsection 3.1.5, introducing a phase difference φ0 in the modulation. For each
value of φ0, we fitted a DAR model with a real driver, and a DAR model with a
complex driver, and compared their negative log-likelihood by time sample (the lower
the better). We also fitted an AR model to serve as a baseline. The parameters were
set to (p,m) = (10, 1).

The results are presented in Figure 3.3. A bias is visible around φ0 = ±π/2, since the
real-valued driver DAR model does not fit better than the AR model. As expected, this
bias disappears when we update the model to a complex-valued driver DAR model. We
also verified that this result holds with m > 1.

3.1.3 Conditional power spectral density

After preprocessing and model estimation, we can compute the conditional power
spectral density (PSD) of the DAR model, as described in Subsection 2.1.4.
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Figure 3.3 – Removing the preferred phase bias with a complex-valued driver. Using
DAR models with a real-value driver is biased if the preferred phase is not 0 or π. Using
a complex-valued driver fixes this bias.

In Figure 3.2 (b and c), one can see two simulated signals: one with PAC on the left (b)
and one without PAC on the right (c). The simulation process, which does not make
use of DAR model, will be detailed and discussed in Subsection 3.1.5.

In Figure 3.2 (d), one can see an example of PSD(x), with artificial driver’s values
xn = ρ exp(jφn). In practice we set ρ to the median of the empirical driver’s amplitude,
ρ = median(|x|), and φn spans the entire interval [−π, π]. Note that the PSD is a
function of the driver value and not only its phase, unless the driver has been normalized
in amplitude. Computing the PSD on a circle allows to visualize the PSD fluctuations
with respect to the driver’s phase, giving a representation similar to other PAC metrics.
The PAC is identified by the modulation of the spectrum with respect to the driver’s
phase φ. Other trajectories could be chosen to visualize also the dependency on the
driver’s amplitude. Note that with DAR models, the amplitude modulation of y is
modeled jointly on the entire spectrum, as opposed to frequency band by frequency
band in most other PAC metrics.

3.1.4 Comodulogram

We now detail how comodulograms can be derived from DAR models. To quantify the
coupling at a given frequency f , we first compute PSD(x)(f) on a range of N artificial
driver’s values xn located on a circle of radius ρ = median(|x(t)|), and we normalize it
to sum to 1:

∀n ∈ [1, N ] pf (n) = PSD(ρej2πn/N )(f)∑N
n=1 PSD(ρej2πn/N )(f)

. (3.4)

Then, we use the same method as (Tort et al., 2010) to measure the fluctuation of
pf (n): we compute the Kullback-Leibler divergence between pf (n) and the uniform
distribution q(n) = 1/N , and we normalize it with the maximum entropy log(N):

M(f) = 1
log(N)

N∑
n=1

pf (n) log
(
pf (n)
q(n)

)
. (3.5)

This metric M is between 0 and 1 and allows us to quantify the non-flatness of
pf (n), i.e. the amplitude modulation, frequency by frequency. We can then build a
comodulogram, a figure commonly used in the literature which depicts the PAC metric
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for a grid of frequencies (fx, f). When derived from DAR models as described here, the
comodulogram is not affected by the systematic biases presented in the introduction.
Indeed, we do not need to filter the high frequencies, and DAR models estimate the
amplitude modulations for all frequencies at the same time.

Figure 3.2 (e) shows the comodulogram of the two simulated signals, one with and one
without PAC. As expected the DAR model reports no coupling when there is none, and
reports a strong coupling here between 3 and 50Hz when it is actually simulated.

3.1.5 Datasets and simulated PAC signals

Datasets We tested DAR models on three different datasets, with invasive recordings
in humans and rodents:

1. A rodent local field potential (LFP) recording in the dorso-medial striatum from
Dallérac et al. (2017, Supplementary figure 2), (1,800 seconds down-sampled at
333Hz).

2. A rodent LFP recording in the hippocampus from Khodagholy et al. (2015)
collected during rapid eye movement (REM) sleep (100 seconds down-sampled at
625Hz).

3. A human electro-corticogram (ECoG) channel in auditory cortex from Canolty
et al. (2006) (730 seconds down-sampled at 333Hz).

We refer the reader to corresponding articles for more details on the recording modalities
of these neurophysiological signals.

Simulations In our experiments, methods comparisons and model evaluations, we
make an extensive use of simulated signals showing some PAC. The simulations are
generated as follows: we simulate a coupling between fx = 3Hz and fy = 50Hz, with a
sampling frequency fs = 240Hz, during T time points (T depends on the experiment).
We do not use a perfect sinusoidal driver, as using such an ideal oscillatory signal is
over-simplistic. Drivers can indeed have a larger band as suggested by our experiments.
Finally, strong empirical evidence suggests that neurophysiological signals have complex
morphologies that can be overlooked when studied as ideal sinusoids (Cole and Voytek,
2017).

To construct a time-varying driver peaking at 3Hz, we bandpass filter a Gaussian white
noise at a center frequency fx = 3Hz and with a bandwidth ∆fx = 1Hz, using the same
filter detailed in the preprocessing Subsection 3.1.1. The smaller the bandwidth, the
closer the driver is to a perfect sinusoid. We normalize the driver to have unit standard
deviation σx = 1. We then modulate the amplitude ay of a sinusoid at, for example,
fy = 50Hz, using a sigmoid on the driver x:

ay(t) = 1
1 + exp(−λx(t)) , (3.6)

with a sharpness set to λ = 3. By doing so, the amplitude varies between 0 and 1
depending on the driver’s value. We normalize the signal y to have a standard deviation
σy = 0.4. We then add to the signal y both the driver x and a Gaussian white noise
with a standard deviation σε = 1. Note that this simulation procedure is not based
on a DAR model. In other words, we do not validate our model using signals that fall
perfectly into the category of stochastic signals that are synthesized with a DAR model.
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3.2 Model selection

3.2.1 Generative models

DAR models are generative, which offers a significant advantage over traditional PAC
metrics. Indeed, we can use the likelihood of the model L (2.8), which quantifies
the goodness of fit of the data given the model, to compare different choice of hyper-
parameters. To select automatically hyper-parameters, we typically perform a grid-search
and select the hyper-parameters which yield the highest likelihood on left-out data.
Importantly, the highest likelihood does not necessarily correspond to the highest PAC
score, but rather to the model with the highest goodness of fit or explained variance.
This detail is crucial, as optimizing for the best fit is a legitimate data-driven approach,
whereas optimizing for the highest PAC score is statistically more questionable.

Importantly, to avoid overfitting the signal used during model estimation, the likelihood
needs to be estimated on another signal. This out-of-sample evaluation is very standard
in the machine learning community (Bishop, 2006), as it reduces the risk of overfitting
the signal used during model estimation. To have a more robust model selection, we
can split the dataset multiple times into a training and a testing signal, and aggregate
the likelihood scores of each split. This procedure is called cross-validation (CV).

Another benefit of a model selection based on CV is that it naturally penalizes the
complexity of the model. Indeed, we may want to compare models with different number
of parameters (i.e. degrees of freedom), for instance with different order p in DAR
models. In that case, adding more degrees of freedom usually leads to a better fit on
the training signal. However, it also increases the variance of the estimation, which may
lead to a poorer fit on out-of-sample signals if the model is too complex. Thus, as CV
selects the model which generalizes the best on unseen data, it naturally avoids too
complex models. Note that CV requires a large amount of data to be left-out for model
testing, and that the two datasets be separated by a minimum delay to ensure data
independence (Arlot et al., 2010). We give an example of model and order selection
with CV in Subsection 3.2.4.

Another approach to compare models with different degrees of freedom is to use a so-
called information criteria, such as the Akaike Information Criterion (AIC) (Akaike, 1998)
or the Bayesian Information Criterion (BIC) (Schwarz et al., 1978). These criteria modify
the log-likelihood with an additive term which penalizes the complexity of the model.
AIC and BIC read respectively AIC = −2 log(L) + 2d and BIC = −2 log(L) + d log(T ),
where d is the number of degrees of freedom of the model. In DAR models with a
complex driver as used for PAC analysis, we have d = (p+ 1)(m+ 1)(m+ 2)/2. Notably,
the BIC has been used extensively for order selection in AR models. We describe an
experiment using model selection based on the BIC in Subsection 2.2.6.

Another selection approach uses a likelihood ratio test to compare nested models. This
test compares a model H1 and a restriction of this model H0 where we set k coefficients
to a fixed value (e.g. 0) before the estimation. Wilk’s theorem (Wilks, 1938) states that
the likelihood ratio −2 log(L0/L1) asymptotically follows a χ2(k) distribution under
the null hypothesis H0. It is then possible to compute a p-value and decide whether to
reject or not the null hypothesis H0.

In practice, we chose to use model selection with CV in almost all our experiments. In
the next three subsections, we present in details the benefit of hyper-parameter selection,
describing three possible applications.
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3.2.2 Driver filter selection

Our first example of hyper-parameter selection concerns the driver’s filter. During
the preprocessing, the driver x is extracted from the preprocessed signal z through a
band-pass filter, with center frequency fx and bandwidth ∆fx. To select automatically
these two parameters, we perform a grid-search over hyper-parameters and select the
one leading to the best likelihood on out-of-sample signals.

For a fair comparison of the drivers, we need to evaluate the model fitting on the
exact same signal y. To do so, we remove from y all the possible drivers tested on this
grid-search using a high-pass filter above maximum center frequency fx. As during
preprocessing, we fill the frequency gap by adding a Gaussian white noise filtered with
a low-pass filter complementary to the high-pass filter.

Simulation study To validate our approach, we tested on simulated signals whether
both center frequency fx and bandwidth ∆fx were correctly estimated. For this, we
simulated signals using fx(simu) = 4Hz and ∆fx(simu) ∈ [0.2, 0.4, 0.8, 1.6, 3.2]Hz. To
mimic the duration of our three real signals, we used T = b100fsc time points, for a
duration of 100 seconds.

As the noise mainly affected the amplitude modulation but barely altered the driver,
we also added a Gaussian white noise low-pass filtered at 20Hz, and scaled to have a
PSD difference of 10 dB at fx = 4Hz between the driver and the noise. By ding so, the
driver was also altered by noise.

Given the simulated signal, we performed a grid-search over fx and ∆fx, extracting
the driver, fitting the model and computing the likelihood of the model. Results are
presented in Figure 3.4. As expected, the center frequency fx was correctly estimated
for all bandwidths ∆fx. More importantly, the negative log-likelihood was minimal at
the correct simulated bandwidth.

This simulation study confirms that the likelihood can be used to estimate the correct
parameters for the driver’s filtering step, and that it does not present any obvious bias
in the estimation.

Driver estimates on human and rodent recordings The outcome of the model
selection procedure on the three neurophysiological signals are reported in Figure 3.5.
Two general observations can be made. First, for all three signals, the optimal bandwidth
was relatively large (3.2Hz). Second, the optimal center frequency changed as we
increased the bandwidth. Interestingly, this phenomenon was not observed in the
simulation study, suggesting that in real data the optimal driver is wide-band and has an
asymmetrical spectrum. In other words, the driver’s frequency is not precisely defined,
and a large band-pass filter should be preferred to extract the driver.

These observations thus question the practical choice of parameters. The classical
approach is to build a comodulogram to select the best driver frequency fx, choosing
arbitrarily the bandwidth ∆fx. This bandwidth is typically quite narrow, e.g. 0.4Hz,
and chosen to clearly isolate the maximum frequency in the comodulogram. However,
this approach relies on the assumption that the driver is nearly sinusoidal, which is
unrealistic (Cole and Voytek, 2017). On the contrary, our data-driven approach selects
the frequency and bandwidth that lead to the highest goodness of fit of our model.
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Figure 3.4 – Driver’s frequency and bandwidth selection (simulations). (a,b) Two
examples of grid-search over both fx and ∆fx, over simulated signals with (a)
∆fx(simu) = 0.4Hz and (b) ∆fx(simu) = 1.6Hz. For all bandwidths (except 6.4Hz),
the negative log-likelihood is minimal at the correct frequency fx = 4Hz. (c) To see
more precisely the bandwidth estimation, we plot the negative log-likelihood (relative
to each minimum for readability), for several ground-truth bandwidth ∆fx(simu), with
fx = 4Hz. For each line, the minimum correctly estimates the ground-truth bandwidth
(depicted as a diamond), showing empirically that the parameter selection method gives
satisfying results.

To further describe the implications of our observations, we focused on the rodent
striatal LFP signal. We compared an arbitrary choice of driver bandwidth (0.4Hz)
and the optimal choice with respect to the model likelihood (3.2Hz). For these two
bandwidths, we selected the optimal center frequencies, 2.2Hz and 4.0Hz respectively.
Figure 3.5(b) shows a time sample of the raw signal and the two extracted drivers. The
wide-band driver (in green) followed very well the raw signal, which was not a perfect
sinusoid. On the contrary, the narrow-band driver (in blue) seemed poorly related to
the slow oscillation of the raw-signal. To determine which of these two slow varying
signals best captured the temporal amplitude modulations of the high frequencies, we
fitted a model using each of these two drivers. We used the same high-pass filtered
signal y, i.e. where we removed all frequencies below 16Hz.

We found that the model with the wide-band driver explained more variance in the
high frequencies than the model with the narrow-band driver, that is, that the model
better explained the amplitude fluctuations of the high frequencies. As we used the
same signal y for both models and as the driver lied in different frequency intervals, it
should be noted that the correspondence to the slow oscillation visible in Figure 3.5(b)
and the quality of the fit of the amplitude modulation in the high frequencies were two
independent observations. By optimizing for the latter, one observes in Figure 3.5(b)
that it leads to a more realistic extraction of the driving neural oscillation.

More generally, our results emphasize the complexity of the choice of parameters in
PAC analysis. With our method, we were able to easily compare different parameters,
even on non-simulated data, which offered a principled way to set them and helped
avoiding misinterpretation due to bad choices. We now investigate the conditional PSDs
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Figure 3.5 – Driver’s frequency and bandwidth selection (real signals). (a,c,d) Negative
log-likelihood of the fitted model for a grid of filtering parameters fx and ∆fx: (a) rodent
striatum, (c) rodent hippocampus, (d) human auditory cortex. The optimal bandwidth
was very large (3.2Hz), and the optimal center frequency changed as the bandwidth
increased, suggesting that the optimal driver had a wide asymmetrical spectrum. (b)
This portion of the rodent striatal signal shows two examples of driver with different
bandwidths: The wide-band driver better follows the raw signal, and independently also
leads to a better fit in DAR models.

and the comodulograms estimates on these three datasets.

PSDs and comodulograms estimates of human and rodent recordings Fig-
ure 3.6 shows for each signal the PSD (in dB) depending on the driver’s phase, estimated
through DAR models. The hyper-parameters (p,m) for the rodent striatal, the rodent
hippocampal and the human cortical data were (90, 2), (15, 2), and (24, 2), respect-
ively. These parameters were chosen by cross-validation with an exhaustive grid search:
p ∈ [1, 100] and m ∈ [0, 3]. The filtering parameters (fx, ∆fx) were chosen to maximize
the likelihood as described in the previous section, and are respectively (8.2, 3.2)Hz,
(5.2, 3.2)Hz and (4.0, 3.2)Hz (Figure 3.6 bottom).

For comparison, we also show the PSD obtained with a bandwidth ∆fx = 0.4Hz,
with the center frequency chosen to maximize the likelihood. We used (6.4, 0.4)Hz,
(3.2, 0.4)Hz and (2.2, 0.4)Hz (Figure 3.6 top), respectively.

We observed two kinds of phenomena. In the rodent striatal and hippocampal data,
the coupling was mainly concentrated around a given high frequency (i.e. 80Hz and
125Hz, respectively), whereas in the human cortical data, the coupling was observed
at all frequencies, with a maximum around 20Hz. The smoothness of the figures
depends on the parameter p: a low value leads to a smoother PSD. Please note that the
interpretation of the results depends on the filtering parameters.

The two phenomena can also be visualized in Figure 3.7, where we plotted comodulograms
for all three signals, computed with four different PAC metrics: the mean vector length
first proposed in Canolty et al. (2006) and updated by Özkurt and Schnitzler (2011),
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Figure 3.6 – PSD conditional to the driver’s phase. Dataset: Rodent striatum (a,d),
rodent hippocampus (b,e), human auditory cortex (c,f). We derive the conditional
PSD from the fitted DAR models. In one plot, each line shows at a given frequency
the amplitude modulation with respect to the driver’s phase. The driver bandwidth
∆fx is 0.4Hz (top row) and 3.2Hz (bottom row). Note that the maximum amplitude
is not always at a phase of 0 or π (i.e. respectively the peaks or the troughs of the
slow oscillation). In figure (d), we can also observe that the peak frequency is slightly
modulated by the phase of the driver (phase-frequency coupling).

the parametric model of Penny et al. (2008) based on GLM, the modulation index of
Tort et al. (2010) that uses the Kullback-Leibler divergence, and our method based on
DAR models.

In DAR models, the hyper-parameters used are the cross-validated values described
above. With other methods, high frequencies were extracted with a bandwidth ∆fy
twice the highest driver frequency used: 14Hz, 28Hz, and 20Hz respectively. For all
methods, the drivers were extracted with the bandwidth ∆fx = 3.2Hz, optimal for
DAR models. The white lines crop the regions with a p-value p < 0.01, as describe in
Subsection 3.3.1.

The resulting comodulograms did not look like typically reported comodulograms, as we
used a much larger bandwidth (3.2Hz) than what was found in the literature. With an
arbitrary choice of parameters, we could have obtained more classical comodulograms,
as shown in Figure 3.8. However, these results could be misleading because they suggest
a coupling between sinusoidal oscillators, although the corresponding drivers are not
perfectly sinusoidal (see Figure 3.5(b)).

On these comodulograms, the four methods yielded comparable results as the data we
used were very long: 1800, 100, and 730 seconds for the rodent striatal, the rodent
hippocampal and the human cortical data, respectively. However, as we will see in
Subsection 3.3.2, differences emerge between methods when the signals are shorter.
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Figure 3.7 – Comodulograms with parameters maximizing the likelihood. Dataset:
rodent striatum (top), rodent hippocampus (middle) and human auditory cortex (bot-
tom). Methods, from left to right: Özkurt and Schnitzler (2011), Penny et al. (2008),
Tort et al. (2010), DAR models (ours). The DAR model parameters and the driver
bandwidth are chosen to be optimal with respect to the likelihood. White lines outline
the regions with a p-value p < 0.01, as described in Subsection 3.3.1.

Figure 3.8 – Comodulograms with parameters maximizing the comodulgoram sharpness.
Dataset: rodent striatum (top), rodent hippocampus (middle) and human auditory
cortex (bottom). Methods, from left to right: Özkurt and Schnitzler (2011), Penny
et al. (2008), Tort et al. (2010), DAR models (ours). The driver bandwidth is chosen
to have a well defined maximum in driver frequency: ∆fx = 0.4Hz. The DAR model
parameters are chosen to give similar results than the other methods: (p,m) = (10, 2).
White lines outline the regions with a p-value p < 0.01, as described in Subsection 3.3.1
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3.2.3 Delay selection and directionality

Our second example of hyper-parameter selection concerns a delay parameter. So
far, DAR models use the driver at time t to parametrize the AR coefficients with the
assumption that, in PAC, high frequency activity is modulated by the driving signal
without any delay. However, one could legitimately ask whether slow fluctuations in
oscillatory activity precede the amplitude modulation of the fast activity or, conversely,
whether high frequency activity precedes low frequency fluctuations. This is what we
will refer to as directionality estimation.

To assess the problem of directionality estimation with DAR models, we capitalize on
the likelihood function. After observing some PAC between y and x, we introduce a
delay τ in the driver so as to estimate the goodness of fit of a DAR model between y and
xτ , where xτ (t) = x(t− τ). Using a grid of values for the delay, one can report the value
τ0 that corresponds to the maximum likelihood. In practice, as we use non-causal filters
to extract the driver, and because the AR model uses samples from the past of the signal
y, one might wonder if there is any positive or negative bias in our delay estimation. To
address this issue, we apply our analysis on both forward and time-reversed signals, and
sum the two models log-likelihood. By doing so, the filtering bias is strongly attenuated
because it similarly affects both forward and time-reversed models. If the best delay is
positive, it means that the past driver yields a better fit than the present driver, i.e. that
the slow oscillation precedes the amplitude modulation of the fast oscillation. Inversely,
a negative delay means that the amplitude modulation of the fast oscillation follows
changes in the slow oscillation. It is noteworthy that in DAR models, we arbitrarily call
driver the slow oscillation although the model makes no assumption on the directionality
of the coupling.

Preferred phase and temporal delay It is worth noting that the estimation of
the delay τ0 shall not be considered as an alternative way to estimate the preferred
phase φ0 defined in Subsection 3.1.2. Although the preferred phase and the delay would
be identical if the driver were a perfect stationary sinusoid, in non-stationary neural
systems in which the driver’s instantaneous frequency may fluctuate with time, the
preferred phase and delay will likely differ. Such a scenario can occur either because
signal waveforms are not perfect sinusoids (Cole et al., 2016) or because the driver
actually changes (Tort et al., 2008). In other words, τ0 is a time delay which is identical
at all time and corresponds to different phase shifts φ(t) = τ0(2πf(t)) which depend on
the instantaneous frequency f(t). On the contrary, φ0 is a phase shift that is constant
over time and which corresponds to different time delays τ(t) = φ0/(2πf(t)) which also
depend on the instantaneous frequency. Figure 3.9 illustrates these specific points and
disentangles the two distinct notions.

Like most PAC metrics, DAR models are invariant with respect to the preferred phase.
Both the strength of the coupling and the model likelihood are unchanged with respect
to φ0 (c.f. Subsection 3.1.2). On the contrary, all PAC metrics including DAR models
are strongly affected by a time delay τ when the driver is not a perfect sinusoid. This
delay attenuates the coupling and may artificially modify the preferred phase. When
the delay is too large, all metrics would measure zero coupling. This is in fact what
justifies the use of surrogate techniques that introduce a large time shift to quantify
the variance of the measure in the absence of coupling (Canolty et al., 2006, Tort et al.,
2010, Aru et al., 2015). Figure 3.9(e-h) provides the delay estimated with DAR models,
obtained by maximizing the likelihood over a grid of delays. In Figure 3.9(i-l), we show
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Figure 3.9 – The temporal delay τ is distinct from the preferred phase φ0. (a) When
both are equal to zero, the high frequency bursts happen in the driver’s peaks. (b) When
τ = 0 and φ 6= 0, the bursts are shifted in time with respect to the driver’s peaks, and
this shift varies depending on the instantaneous frequency of the driver. (c) When
τ 6= 0 and φ = 0, the bursts are shifted in time with respect to the driver’s peaks,
and this shift is constant over the signal. In this case, note how the driver’s phase
corresponding to the bursts varies depending on the instantaneous frequency of the
driver. (d) τ and φ0 can also be both non-zero. (e-h) Negative log-likelihood of DAR
models, fitted with different delays between the driver and the high frequencies. The
method correctly estimates the delay even when φ0 6= 0. (i-l) PSD conditional to the
driver’s phase, estimated through a DAR model with the best estimated delay. The
maximum amplitude occurs at the phase φ0.

the conditional PSD of the model obtained with the best estimated delay as well as the
estimated preferred phase φ0. Using the likelihood, our method is able to estimate this
delay, thus improving PAC estimation and extending PAC analysis.

Other directionality approaches The question of delay estimation has been pre-
viously addressed in the literature with measures borrowed from information theory.
For instance, transfer entropy (TE) (Schreiber, 2000, Wibral et al., 2013, Park et al.,
2015) has been adapted to PAC by applying it on the driver and the envelop of the fast
oscillations (Besserve et al., 2010). The TE from a signal a to a signal b is defined as the
mutual information between the present of b and the past of a, conditioned on the past
of b. It is similar in this way to Granger causality (GC) (Granger, 1969), which also
compares how the present of b can be better predicted by the past of both a and b, than
by only the past of b, using AR models. Note that when variables follow a Gaussian
distribution, TE and GC are actually equivalent (Barnett et al., 2009). In the case
of PAC, both TE and GC need to be evaluated on the driver x and the envelope of a



3.2. MODEL SELECTION 71

bandpass filtered yf . Interestingly, GC has been shown to fail when the signal-to-noise
ratios of the two signals are different (Nolte et al., 2010), which is often the case for the
driver and the envelop of the high frequencies. Hence, it remains to be investigated how
TE/GC compares with DAR models in terms of performances.

Our method is also different from these other methods, since we model directly y and
not its envelop, making our method more specific to PAC. This is made possible since
DAR models use the delayed driver xτ not to predict y, but to modulate how y is
predicted from its own past. PAC directly arises from this non-linear interaction in
DAR models. Inherently to this PAC specificity, our method is also asymmetrical with
respect to x and y.

Directionality in PAC has also been addressed with another method called Cross-
Frequency Directionality (CFD) (Jiang et al., 2015), which is based on the phase slope
index (PSI) (Nolte et al., 2008). PSI is a measure of the phase slope in the cross-
spectrum of two signals, and is also used to infer causal relations between signals. CFD
adapts this measure by applying it on the driver and the envelop of the fast oscillations.
Contrary to TE, CFD is not designed to measure a delay; thus, we modified it so as to
compare it qualitatively to our approach (see below).

If such delay estimation results may not reflect pure causality (Aru et al., 2015), for
instance because of the transitivity of correlation, they nevertheless improve the analysis
of PAC going one step further by estimating the delay between the coupled components.

Simulation study To validate the directionality estimations approach, we simulated
signals with T = 1024 time points (4 seconds), as described in Subsection 3.1.5. We
introduced a delay between the slow oscillation and the amplitude modulation of the fast
oscillation, and verified that our method could correctly estimate the delays. Importantly,
we did not use a perfect sinusoidal driver, as the delay would only end up in a phase shift,
and would not change the strength of the PAC. We used a bandwidth ∆fx = 2.0Hz
and a noise level σε = 0.4.

We compared our method, using a DAR model with (p,m) = (10, 1), to the cross-
frequency directionality (CFD) approach described in (Jiang et al., 2015). This method
makes use of the phase slope index (PSI) (Nolte et al., 2008) for PAC estimation. In
(Jiang et al., 2015), the PSI over a frequency band F is defined as:

PSI(F ) = =(
∑
f∈F

Cxy(f)∗Cxy(f + δf )) , (3.7)

where Cxy is the complex coherence, = is the imaginary part, and δf is the frequency
resolution. As the PSI was not designed to provide an estimation of the delay, we
modified it into:

τPSI(F ) = PSI(F )
2πδfnF

, (3.8)

where nF is the number of frequencies in set F . Note that this delay estimator is correct
only if the coherence is almost perfect Cxy(f) ≈ 1 and if the phase slope is small enough
to have sin(φ(f + δf )− φ(f)) ≈ φ(f + δf )− φ(f). As these assumptions are rarely met
in practice, we only used this estimator to compare qualitatively with our own estimator.

Results presented in Figure 3.10 show the mean estimated delay with ±1 standard
deviation computed over 20 simulations. The delay was correctly estimated in both
time directions, without any visible bias. As expected, the modified CFD was biased,
and showed a higher variance than the DAR-based approach.
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Figure 3.10 – Estimating delays over 20 simulations for each delay. The delays are
estimated on both direct time (a) and reverted time (b). The delays are normalized:
τ = 1 corresponds to one driver oscillation, i.e. 1/fx sec. The modified CFD shows a
bias and only serves for qualitative comparison. The delay estimation based on DAR
models correctly estimates the delays, without any visible bias.

Delay estimates in human and rodent recordings We applied this delay es-
timation method on the three experimental recordings. Once again, note that the
comparison with the CFD (Jiang et al., 2015) is only qualitative, since the CFD was
not designed as a delay estimator. The temporal delay was estimated with DAR models
with the parameters obtained from the cross-validation selection. The driver we used
was obtained with the best filtering parameters found in our grid-search: (fx, ∆fx) are
respectively (4.0, 3.2)Hz, (8.2, 3.2)Hz, and (5.2, 3.2)Hz.

The results are presented in Figure 4.13, where we display the delay estimated with
maximum likelihood over multiple DAR models. We also display error bars which
correspond to the standard deviation obtained with a block-bootstrap strategy (Carlstein,
1986). This strategy consists in splitting the signal into n = 100 non-overlapping blocks
of equal length, to draw at random with replacement n blocks (using the same n), and to
evaluate the delay on this new signal. We repeated this process 20 times and computed
the standard deviation of the 20 estimated delays. Such strategy is used to estimate
empirically the variance of a general statistic from stationary time series.

First, one can observe that the results were qualitatively similar between the two
methods. The CFD was biased toward zero for large delays, as was previously shown
in the simulations. One can also note that the directionality was not always the same
across datasets. For the rodent striatal and the human cortical data, the delay was
negative and the best model fit happened between the signal y and the future driver x.
Inversely, in the rodent hippocampal data, the delay was positive, and the best model
fit was between the signal y and the past driver x. Further experiments need to be
performed to better understand the origin of such delays but we demonstrate here the
usefulness of DAR models to estimate them.

Note that our method does not select the delay that leads to the maximum PAC, which
would not be statistically valid. On the contrary, we select the delay that leads to the
best fit of the model on the data. This approach is more rigorous since we maximize
the variance explained by our model, and not the effect of interest.
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Figure 3.11 – Estimated delays on rodent and human datasets. (a) Negative log
likelihood for multiple delays, with the human cortical signal. (b) Optimal delay for the
three signals, computed with model selection on DAR models, and with a CFD method
modified to provide a delay. The error bars indicate the standard deviation obtained
with a block-bootstrap strategy. For the rodent hippocampal data, the delay is positive:
the low frequency oscillation precedes the high frequency oscillation. For the human
cortical data and the rodent striatal data, the delay is negative: the high frequency
oscillation precedes the low frequency oscillation.

3.2.4 Amplitude of the driver

Our last example of model selection concerns the driver’s amplitude. One can note that
in DAR models, the driver contains not only the phase of the slow oscillation, but also
its amplitude. As the driver is not a perfect sinusoid, its amplitude fluctuates with
time. On the contrary, most PAC metrics discard the amplitude fluctuations of the slow
oscillation and only consider its phase.

To evaluate these two options, we compared two drivers using DAR models: the original
(complex) driver x(t), and the normalized driver x̃(t) = x(t)/|x(t)|. This normalized
driver only contains the phase information, as in most traditional PAC metrics. Using
cross-validation, we compared the log-likelihood of the two fitted models, and found a
difference always in favor of the non-normalized driver x(t), as it can be visualized in
Figure 3.12.

More precisely, for all three dataset, (a) rodent striatum, (b) rodent hippocampus, and
(c) human auditory cortex, we split the signal in half, we fitted the models on the first
half, and evaluated the model likelihood on the second half. We compared four different
models on a grid of parameter p ∈ [0, 100− 200] and m ∈ [0, 3]:

1. AR: a linear AR model
2. Heteroskedastic AR (HAR): an hybrid model between a linear AR model and

a DAR model, where the innovation variance σ2 is driven by x, but the AR
coefficients are constant in time.

3. Phase DAR (PDAR): a DAR model, with a normalized driver: x/|x|. By doing
so, we only consider the phase of the slow oscillation, as in most PAC metrics.

4. DAR: a DAR model, where both the innovation variance σ2 and the AR coefficients
are driven by x.

The figures present the negative log likelihood (lower is better) by time sample, computed
on left-out data. Each line in Figure 3.12 corresponds to a given model with the parameter
m corresponding to the best couple of parameter (p,m), as listed in Table 3.1. One can
observe that the curves of negative log-likelihood are not convex, yet they exhibit rather
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Table 3.1 – Best couple of parameter (p,m) as selected by maximum likelihood through
cross-validation, for different models and datasets: (a) rodent striatum, (b) rodent
hippocampus, and (c) human auditory cortex. See also Figure 3.12.

Model Dataset (a) Dataset (b) Dataset (c)

AR (179, 0) (80, 0) (0, 0)
HAR (179, 2) (80, 2) (0, 2)
PDAR (82, 2) (15, 1) (29, 1)
DAR (90, 2) (15, 2) (24, 2)
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Figure 3.12 – Negative log-likelihood (lower is better) of different models with different
AR order p, on three datasets: (a) rodent striatum, (b) rodent hippocampus, and (c)
human auditory cortex. The negative log likelihood is computed on left-out data. DAR
models always outperform PDAR models, which suggests that the coupling phenomenon
is associated with amplitude fluctuations in the driver.

clear minima used to define the optimal parameters.

This result shows that the coupling phenomenon is associated with amplitude fluctu-
ations, a kind of phase/amplitude-amplitude coupling, as it was previously observed in
van Wijk et al. (2015). In their work, the GLM parametric method (Penny et al., 2008)
was improved when taking into account the amplitude of the slow oscillation. Here, we
use our generative model framework to provide an easy comparison tool through the
likelihood, to validate this neuroscientific insight directly from the signals.
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3.3 Statistical significance

3.3.1 Quantifying significance

A general challenge of PAC analysis is to quantify the significance of a result. Indeed, a
PAC metric generally gives a value which is large when there is a coupling, and close to
zero when there is no coupling, but we need to quantify what it means to be close to
zero.

Permutation techniques A standard way to tackle this issue is to use permutation
techniques to estimate the distribution of the metric in the absence of coupling (Canolty
et al., 2006, Aru et al., 2015). To do so, a standard technique is to add a large random
time shift between x and y, assuming no coupling is possible for large time shifts. The
PAC value between the shifted signals is thus close to zero. Repeating this process
multiple times (e.g. 1000 times), we obtain an empirical probability distribution, and
we can estimate the probability of observing a given coupling by chance, i.e. as a false
positive. This probability is called a p-value, and it is usually compared to an arbitrary
threshold usually set at α = 0.05, though multiple critics advocate to use a smaller one.

This approach is sometimes applied directly on the comodulogram. In this case, as
a comodulogram contains multiple couple of frequencies (fx, fy), the p-value needs
to be corrected to avoid suffering from multiple testing issues. To correct it, the
Bonferroni adjustment is very popular. It simply divides the threshold α by the number
of tests (Bonferroni, 1936), thus controlling the error rate on the entire collection of test.
However, as this adjustment is very strict, another common strategy is to estimate a false
discovery rate (FDR). The FDR quantifies the percentage of false positive associated
with a given threshold (Benjamini and Hochberg, 1995).

Another approach to avoid multiple testing issue is to consider the distribution of
the maxima. After adding a random time shift, the idea is to compute the entire
comodulogram, and to keep only the maximum value, repeating this process multiple
times to estimate the distribution of maxima in the case of uncoupled time shifted
signals. Then, we can take the 99-percentile of this distribution to obtain the threshold
associated with the p-value p = 0.01. This method does not suffer from multiple testing
issues contrary to the previous approach that estimates a different null distribution
for each frequency couple in a comodulogram. This is the method we used in our
experiments.

Importantly, we avoid using a z-score, since we cannot assume the distributions to be
Gaussian. A z-score is computed by standardizing the PAC value, using the mean and
standard deviation of the PAC distribution on uncoupled time shifted signals. This
standard step, for instance used in Canolty et al. (2006), assumes that the distribution
is Gaussian, which is not true in general. Since we have an estimate of the distribution,
a p-value can be estimated directly from the distribution, without the use of a z-score.

We present in Figure 3.13 an example of comodulogram with contours lines delineating
the significant values. The comodulogram was computed on a signal with simulated
PAC between 5Hz and 50Hz, with T = 1000 points sampled at fs = 200Hz, using
DAR models. We computed 200 comodulograms with random time shifts between x
and y, to estimate the distribution of values when there is no coupling. In the left
image, we transformed the PAC value into z-scores, corresponding to the distribution
of each couple of frequency, i.e. each point of the comodulogram. We then derived a
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Figure 3.13 – Significance contours on a comodulogram (white lines). (a) Significance
computed with a z-score on each couple of frequency. (b) Significance computed with a
p-value on the distribution of maxima.

threshold from the z-scores. In the right image, we computed a single threshold from
the distribution of comodulogram maxima. We observe that the latter is more resistant
to false positives.

Model selection techniques Analyzing PAC with DAR models enables a different
way to evaluate if there is significant PAC. Indeed, as described in details in Section 3.2,
we can use the model likelihood to perform model selection. This approach is not
possible with standard PAC metrics, since they do not offer a goodness of fit score.

For example, comparing DAR models and AR models, we can evaluate if there is a
significant spectral modulation with respect to a given driver. If the AR models are
selected, it means that the potential spectral modulations were not strong enough to
better fit the signal with a DAR model than with an AR model. On the contrary, if
DAR models are selected, it means that there is a spectral modulation coupled with the
given driver, strong enough to better fit than linear AR models. The fitted DAR model
can then be analyzed to describe which kind of spectral modulation is present, using for
instance conditional PSD representations as in Figure 3.6.

It is worth recalling that DAR models and AR models are nested, in the sense that AR
models are a special case of DAR models. Thus, a DAR model would only have more
degrees of freedom, and would thus always better fit the training signal. Therefore,
it is critical to estimate the fitting not on the training signal, but on left-out signals,
i.e. data not used during model estimation.

3.3.2 Robustness to small samples

Given that DAR models are parametric with a limited number of parameters to estimate,
less time samples may be needed to estimate PAC as compared to non-parametric
methods. We tested this assumption using simulated signals of varying duration. We
computed their comodulograms (as in Figure 3.7) and selected the frequencies of
maximum coupling. For each duration, we simulated 200 signals, selected the 200
frequency pairs corresponding to the maxima, and plotted them in a 2D representation.
We then compared the following four methods: DAR models with (p,m) = (10, 1),
the GLM-based model (Penny et al., 2008), and two non-parametric methods (Tort
et al., 2010, Özkurt and Schnitzler, 2011). Results shown in Figure 3.14 show that
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Figure 3.14 – Robustness to small samples. Frequencies of the maximum PAC value,
with four methods: a DAR model with (p,m) = (10, 1), the GLM-based model from
Penny et al. (Penny et al., 2008), and two non-parametric models from Tort et al. (Tort
et al., 2010) and Ozkurt et al. (Özkurt and Schnitzler, 2011). Each point corresponds
to one signal out of 200. Kernel density estimates are represented above and at the
right of each scatter plot. From left to right, the simulated signals last T = 2, 4 and
8 seconds. The signals are simulated with a PAC between 3Hz and 50Hz. The DAR
models correctly estimate this pair of frequency even with a short signal length, as
well as the GLM-based metric (Penny et al., 2008), while the two other metrics (Tort
et al., 2010, Özkurt and Schnitzler, 2011) are strongly affected by the small length of
the signals, and do not estimate the correct pair of frequency.

parametric approaches (DAR models and GLMs) provided a more robust estimation of
PAC frequencies with short signals (T = 2 sec) than non-parametric methods.

The robustness to small sample size is a key feature of parametric models, as it
significantly improves PAC analysis during shorter experiments. When undertaking
a PAC analysis across time using a sliding time window, parametric models should
therefore provide more robust PAC estimates. Note that the specific time values in these
simulations should not be taken as general guidelines as they depend on the simulation
parameters such as the signal-to-noise ratio. However, across all tests we ran, parametric
methods consistently provided more accurate results than non-parametric ones.

3.3.3 Spurious PAC

A recent concern in PAC analysis is that all PAC metrics may detect a coupling even
though the signal is not composed of two cross-frequency coupled oscillators (Kramer
et al., 2008, Lozano-Soldevilla et al., 2016, Amiri et al., 2016, Gerber et al., 2016, Vaz
et al., 2017). It may happen for instance with sharp slow oscillations, described in
humans intracranial recordings (Cole et al., 2016). Sharp edges are known not to be well
described by a Fourier analysis, which decomposes the signal in a linear combination of
sinusoids. Indeed, such sharp slow oscillations create artificial high frequency activity at
each sharp edge, and these high frequencies are thus artificially coupled with the slow
oscillations. This false positive detection is commonly referred to as “spurious” coupling
(Jensen et al., 2016).

Figure 3.15a shows some simulated spurious PAC dataset, generated using a spike
train at 10Hz and pink noise, as described in (Gerber et al., 2016), and Figure 3.15b
shows comodulograms computed on this signal. The figure shows that all four methods,
including the proposed one, detect some significant PAC, even though there is no
nested oscillations in the signal. Even though our method does not use filtering in the
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Figure 3.15 – Spurious PAC. (a) Spurious PAC was generated using a spike train at
10Hz and pink noise, as described in (Gerber et al., 2016). (b) All four methods,
including the proposed one, detect some significant PAC, even though there is no nested
oscillations.

high frequencies, it does not solve this issue and is affected in the same way as other
traditional PAC metrics. Indeed, our work shed light on the wide-band property of the
slow oscillations, but DAR models cannot cope with full-band slow oscillations, which
contain strong harmonic components in the high frequencies. However, we consider
that such “spurious” PAC can also be a relevant feature of a signal, as stated in (Cole
et al., 2016). In their study, they show that abnormal beta oscillations (13-30Hz) in
the basal ganglia and motor cortex underlie some “spurious” PAC, but are actually a
strong feature associated with Parkinson’s disease. A robust way to disentangle the
different mechanisms that lead to similar PAC results remains to be developed.

3.4 Discussion

Cross-frequency coupling Cross-frequency coupling (CFC) and phase-amplitude
coupling (PAC) more specifically have been proposed to play a fundamental role in
neural processes ranging from the encoding, maintenance and retrieval of information
(Buzsáki, 2010, Jensen and Colgin, 2007, Lisman and Jensen, 2013, Axmacher et al.,
2010, Fell and Axmacher, 2011, Kaplan et al., 2014, Hyafil et al., 2015), to large-scale
communication across neural ensembles (Canolty and Knight, 2010, Jirsa and Müller,
2013, Khan et al., 2013, Florin and Baillet, 2015). While a steady increase in observations
of PAC in neural data has been seen, how to best detect and quantify such phenomena
remains difficult to settle.

DAR models We argue that a method using DAR models, as described here, is rich
enough to capture the time-varying statistics of brain signals in addition to provide
efficient inference algorithms. These non-linear statistical models are probabilistic,
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allowing the estimation of their goodness of fit to the data, and allowing for an easy and
fully controlled comparison across models and parameters. In other words, they offer
a unique principled data-driven model selection approach, an estimation strategy of
phase/amplitude-amplitude coupling based on the approximation of the actual signals, a
better temporal resolution of dynamic PAC and the estimation of coupling directionality.

Model and parameter selection One of the main features of PAC estimation
through our method is the ability to compare models or parameters on non-synthetic
data. On the contrary, traditional PAC metrics cannot be compared on non-synthetic
data, and two different choices of parameters can lead to different interpretations. There
is no legitimate way to decide which parameter shall be used with empirical data using
traditional metrics. The likelihood of the DAR model that can be estimated on left-out
data offers a rigorous solution to this problem.

Experiments We presented results on both simulated signals and empirical neuro-
physiological signals. The simulations gave us an illustration of the phenomenon we
want to model, and helped us understand how to visualize a fitted DAR model. They
also served a validation purpose for the bandwidth selection approach that we performed
on real data. Using the data-driven parameter selection on non-synthetic signals, we
showed how to choose sensible parameters for the filtering of the slow oscillation. All
empirical signals are different, and it was for example reported in the neuroscience
literature that peak frequencies vary between individuals (Haegens et al., 2014) and
that this should not be overlooked in the analysis of the data. The parameter selection
based on fitted DAR models makes it possible to fit parameters on individual datasets.
Our results also shed light on the asymmetrical and wide-band properties of the slow
oscillation, which could denote crucial features involved in cognition (Cole and Voytek,
2017).

Driver’s amplitude fluctuations The second novelty of our method stands in
considering the amplitude fluctuations of the slow oscillation in the PAC measure and
not only its phase. Using the rodent and human data, we showed that the instantaneous
amplitude of the slow oscillation influences the coupling in PAC, as it was previously
suggested in (van Wijk et al., 2015). The amplitude information should therefore
not be discarded as it is done by existing PAC metrics. For instance, the measure of
alpha/gamma coupling reported during rest (Osipova et al., 2008, Roux et al., 2013)
should incorporate alpha fluctuations when studied in the context of visual tasks (Voytek
et al., 2010), as an increase of alpha power is often concomitant with a decrease of
gamma power (Fries et al., 2001). The comparison between DAR models considering or
not these low-frequency power fluctuations would inform on the nature of the coupling:
purely phase-amplitude, or rather phase/amplitude-amplitude. In Tort et al. (2008),
both theta power changes and modulation of theta/gamma PAC were reported in rats
having to make a left or right decision to find a reward in a maze. The use of our
method could decipher whether the changes in coupling were related to the changes in
power, informing on the underlying mechanisms of decision-making. Moreover, as our
method models the entire spectrum simultaneously, a phase-frequency coupling could
potentially be captured in our models. Therefore, our method is not limited to purely
phase-amplitude coupling, and extends the traditional CFC analysis.
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Robustness to small samples Furthermore, in those types of experiments, changes
in PAC can be very fast depending on the cognitive state of the subject. Therefore,
the need for dynamic PAC estimates is growing (Tort et al., 2008). We showed with
simulations that DAR models are more robust than non-parametric methods when
estimating PAC on small time samples. This robustness is critical for time-limited
experiments and also when analyzing PAC across time in a fine manner, typically when
dynamic processes are at play.

Delay estimation Last but not least, likelihood comparison can also be used to
estimate the delay between the coupled components, which would give new insights on
highly debated questions on the role of oscillations in neuronal communication (Fries,
2005, Bastos et al., 2015). For example, a delay close to zero could suggest that the
low and high frequency components of the coupling might be generated in the same
area, whereas a large delay would suggest they might come from different areas. As
an alternative interpretation, the two components may come from the same area, but
the coupling mechanism itself might be lagged. In this case, a negative delay would
suggest that the low frequency oscillation is driven by the high frequency oscillations,
whereas a positive delay would suggest that the low frequency oscillation drives the
high frequency amplitude modulation. In any case, this type of analysis will provide
valuable information to guide further experimental questions.

Multivariate signals The method we presented here uses univariate signals obtained
invasively in rodents or humans. As a lot of neurophysiological research uses non-invasive
MEG or EEG recordings containing multiple channels, a multivariate analysis could
be of high interest. One way to use data from multiple channels is to estimate a
single signal using a spatial filter such as in (Cohen, 2017). Such a method is therefore
complementary to univariate PAC metrics like ours which can be applied to the output
of the spatial filter. The method from (Cohen, 2017) builds spatial filters that maximize
the difference between, say, high-frequency activity that appears during peaks of a
low-frequency oscillation versus high-frequency activity that is unrelated to the low-
frequency oscillation. Again, from the signal obtained with the spatial filter, it is
straightforward to adapt most PAC metrics such as our method. In Section 4.2, we
describe how to derive these spatial filters directly from DAR models, for multivariate
PAC analysis.

Conclusion Neurophysiological signals have all the statistical properties to make
them a challenge from a signal processing perspective. They contain non-linearities, non-
stationarities, they are noisy and they can be long, hence posing important computational
challenges. Our method based on DAR models offer novel and more robust possibilities
to analyze neurophysiological signals, paving the way for new insights on how our brain
functions via spectral interactions using local or distant coupling mechanisms.
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Extensions to DAR models

“I’m killing time while I wait for life to
shower me with meaning and happiness.”

– Bill Watterson
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In this chapter, we describe different extensions to DAR models, centered on the driver
estimation. We first describe how to estimate the driver as a weighted sum over a set of
potential drivers. Then we show how to use such estimated driver in two applications.
In the case of multivariate signals, we describe how to estimate virtual channels on
which we can apply DAR models to describe PAC. We also use driver estimation in
an encoding setting, modeling brain activity conditionally to the stimuli using DAR
models, leading to a spectro-temporal receptive field (STRF) estimation.

This chapter covers the following publication:

• Dupré la Tour, T., Grenier, Y., and Gramfort, A. (2018a). Driver estimation
in non-linear autoregressive models. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE
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4.1 Driver estimation in DAR models

In Chapter 2, we introduced DAR models, a class of deterministic continuously switching
AR models which use polynomial parametrizations with respect to a driving signal x.
In these models, the driver is assumed to be known, and do not need to be estimated.

In Chapter 3, we described how to use DAR models on neurophysiological signals to
model spectral modulation driven by a given slow oscillation, a phenomenon known
as phase-amplitude coupling (PAC). In this case, the driver x was extracted from the
signal using band-pass filtering, and we discussed in details how to use model selection
to choose filtering parameters among a discrete grid of parameters.

However, due to the finite set of grid points, such driver may not correspond perfectly
to the spectral dynamic of the modeled signal. Here, we propose to optimize the driver,
to better fit the spectral trajectory of the modeled signal. To do so, a critical element is
to use the entire signal for the spectral estimation, and not only a small time window.
Indeed, we assume that the spectral states are repeated multiple times in the signal,
and we should use the multiple repetitions to improve the estimation of the spectral
states.

4.1.1 Potential approaches

Time-varying AR models To estimate the spectral trajectory without the driver,
on possible approach could be to use unstructured time-varying AR models (TVAR)
(Dahlhaus, 1996). In these models, one updates the AR model at each time point, with
a single gradient descent step. Obviously, the step size is here critical, as it defines the
smoothness of the parameter evolution. One solution is to use different step sizes, and
to aggregate the instantaneous AR estimators, for example as described in Giraud et al.
(2015).

TVAR models are very general, and do not use the repetition of spectral states, as
present in PAC. To use this powerful property, we could approximate the obtained
trajectory (in Rp) of the instantaneous AR coefficients into a low-rank trajectory
A ≈ XÃ, where A ∈ R(T,p), X ∈ R(T,m), and Ã ∈ R(m,p), with m� p. This idea could
be formulated with the nuclear norm (Recht et al., 2010), using for instance a singular
value thresholding scheme to estimate X (Cai et al., 2010). The low-rank trajectory X
would be the estimated driver.

This idea is similar to the approach briefly described in Dimitriadis et al. (2016), where
PAC is estimated on a sliding time-window, independently on each electrode. Then, at
group level, a low-rank approximation of the time-varying PAC patterns is estimated,
using the neural gas algorithm (Martinetz et al., 1991) to detect a low number of PAC
micro-states. In Dimitriadis et al. (2016), the micro-states are defined by the pattern
on the 64 electrodes, whereas in our case, we would define the states with the p AR
coefficients.

Hidden Markov models There exists other attempts to define micro-states, making
efficient use of the data when the same patterns occur recurrently at other points of
time to improve estimation. Hidden Markov models (HMM) (Baum and Petrie, 1966)
are probabilistic models which infer a number of states in the data, modeling with a
Markov chain the switch between states. Each state is defined by a different probability
distribution, from which the data is observed. The hidden states probabilities and
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the probability distributions are typically inferred jointly, for example through an EM
algorithm (Rabiner, 1989, Cappé et al., 2006, Rukat et al., 2016).

HMM have been used to estimate fast transient brain states in MEG data. The different
states were defined with the noise means and covariance matrices (Woolrich et al.,
2013, Baker et al., 2014, Vidaurre et al., 2017), or with vector AR (VAR) coefficients
(Vidaurre et al., 2016).

Using AR models to define the different states, we could estimate PAC as composed of
such a succession of spectral states. Such approach is similar to the work of Hamilton
(1989), which uses non-linear AR models assuming a Markov chain structure in the
driver. We could alternatively define the states with DAR models, which would then
lead to the estimation of different PAC states.

Sum of potential drivers If the previous approaches could be successful, in the case
of PAC, we can also use the strong assumption that the spectral dynamic is actually
present in the signal. Indeed, we know that some low frequency bands contain a lot of
information about the spectral modulation trajectory.

Moreover, inline with the philosophy of previous chapter, we would like to be able to
evaluate our models on out-of samples data. Therefore, we cannot use methods that
need to re-estimate the model on the validation data, such as TVAR models or HMM.

To leverage the low-frequency information, and to enable evaluation on a validation
set, we propose a different approach, using multiple drivers in DAR models. In fact,
one could potentially add more drivers directly into DAR models, just as we used two
drivers in (3.2). This is similar to the work of Grenier (1983), Jachan et al. (2007),
Spiridonakos and Fassois (2014), but it could lead to a very large number of degrees of
freedom, especially if we use the cross terms between drivers as in (3.2). Estimation
would have high variance, increasing the risk of model overfit. We would also lose the
nice interpretability of the single driver, which is critical in neuroscience applications.

Instead, we propose to build a weighted average of potential drivers as in Chen and
So (2006), Wu and Chen (2007), where the obtained driver was used on a threshold
AR model and on a probabilistic switching AR model respectively. In our case, we use
the weighted sum as a single driver in the polynomial parametrization of DAR models
(c.f. Chapter 2). We decompose the driver into:

x(t) =
N∑
n=1

αnxn(t). (4.1)

The set of potential drivers {xn} can be for instance, a Fourier basis xn(t) = exp(j2πnt)
as in Jachan et al. (2007), or a Gabor dictionary (Feichtinger and Strohmer, 2012).
Another choice is to use a set of delayed signals xn(t) = z(t− n) with −M ≤ n ≤M .
In this case, the coefficients αn define a linear filter applied to z. We used this set in
our experiments.



84 CHAPTER 4. EXTENSIONS TO DAR MODELS

4.1.2 Driver estimation

We estimate the optimal driver weights αn by maximizing the likelihood L of the model:

L =
T∏

t=p+1

1√
2πσ(t)2

exp

− ε(t)2

2σ(t)2

 (4.2)

−2 log(L) = T log(2π) +
T∑

t=p+1

ε(t)2

σ(t)2 + 2
T∑

t=p+1
log(σ(t))

Using an alternating optimization approach, we optimize the DAR model coefficients
while keeping the driver fixed (c.f. Subsection 2.1.3), and we optimize the driver
weights αn while keeping the DAR model fixed. As this problem is non-convex, weights
initialization is key to find good local minima.

Optimizing the driver weights can be done with various optimization algorithms. Here,
we choose the quasi-Newton L-BFGS algorithm (Byrd et al., 1995), which only requires
to compute the gradients. The gradient with respect to the weights reads:

∂ logL
∂αn

= −
∑
t∈Θ

 ε(t)
σ(t)2

∂ε(t)
∂αn

+ (1− ε(t)2

σ(t)2 )∂ log σ(t)
∂αn


where Θ = [p + 1, T ] in the general case. In our experiments, we restricted the sum
to Θ = [max(p + 1,M), T −M ] to remove filtering issue at the edges. In particular,
when multiple values of M are compared, we need to restrict the comparison to
Θ = [max(p+ 1,Mmax), T −Mmax].

The partial derivatives read:
∂ε(t)
∂αn

= xre,n(t)∂ε(t)
∂xre

+ xim,n(t)∂ε(t)
∂xim

(4.3)

∂ log σ(t)
∂αn

= xre,n(t)∂ log σ(t)
∂xre

+ xim,n(t)∂ log σ(t)
∂xim

(4.4)

Let’s note x_ when an expression is similar for both xre and xim. From equations (2.1),
(3.2), and (3.3), we obtain:

∂ε(t)
∂x_

=
p∑
i=1

A>i
∂X(t)
∂x_

y(t− i) (4.5)

∂ log σ(t)
∂x_

= B>
∂X(t)
∂x_

(4.6)

Finally, we can rewrite:
∂ logL
∂αn

= −
∑
t∈Θ

(
xre,n(t)gre(t) + xim,n(t)gim(t)

)
(4.7)

with

g_(t) =

 ε(t)
σ(t)2

∂ε(t)
∂x_

+ (1− ε(t)2

σ(t)2 )∂ log σ(t)
∂x_

 (4.8)

Computing the gradient involves O(Tpm̃) operations to compute g_, and O(TN)
operations to compute the gradient in (4.7). In the special case x_,n(t) = z_(t− n), we
can rewrite (4.7) into a convolution, which can be performed in O(T log(T )) using the
fast Fourier transform (FFT).
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Figure 4.1 – Negative log-likelihood of DAR models fitted with different drivers (lower
is better) and evaluated on a validation set. (Left) Grid search: The drivers were
bandpass filtered at center frequency fx with a bandwidth ∆fx. (Right) Gradient
descent: The filters extracting the drivers were optimized by gradient descent, using
either several bandpass filter initializations or some random initializations. All bandpass
filter initializations with center frequency ranging from 2Hz to 8Hz gave optimal and
comparable likelihoods. Filter order (495, 247, 123, 61) respectively correspond to
bandwidths (0.8, 1.6, 3.2, 6.4)Hz.
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Figure 4.2 – Comparison of 4 models: 3 DAR fitted with different drivers, and 1 linear
AR for reference. Both gradient descent and grid search strategies give comparable
results, which are much better than when using the driver on the entire band [0, 20] Hz.
(Left) Negative log-likelihood on a validation set (lower is better). (Right) Power spectral
density of the best driver for each strategy.

Adding a symmetry constraint In the special case xn(t) = z(t− n), if we want to
make sure the filter is zero-phase, we just need to make the filter symmetric. We can
rewrite the driver as x = 2α0x0 +

∑M
n=1 αn(xn + x−n), where N = 2M + 1. A factor

2 is added in front of α0 to have the same scale as the other weights. The gradient is
updated into ∂x

∂αn
= xn + x−n if n > 0 and ∂x

∂αn
= 2x0 if n = 0.
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Figure 4.3 – Same as Figure 4.1, but using a bimodal driver at 5 and 14Hz. The gradient
descent strategy gave better results than grid-search, when using a good initialization.
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Figure 4.4 – Same as Figure 4.2, but using a bimodal driver. With a more complex
spectral structure, the gradient descent strategy gives much better results than the grid
search one, which is limited to single mode bandpass filters.

4.1.3 Experiments

Simulated data We created simulated signals with artificial coupling between a
driver and a sinusoid. The signals were sampled at fs = 240Hz, and have a length
T = 105. We first created a driver x by filtering a Gaussian white noise with a filter
w(t) = b(t) exp(2jπfxt), where b is a Blackman window of order 2b1.65fs/∆fxc + 1,
chosen to have a bandwidth of ∆fx at −3 dB. This driver x was then used to modulate
the amplitude of a sinusoid y(t) = s(x(t)) sin(2πfyt) where s is a sigmoid function. The
modulated sinusoid and the driver were summed up, along with some noise. The noise
was pink with a frequency slope f−2 above 3Hz and a plateau below 3Hz, to mimic
neurophysiological signals. The amplitude of the three signals were chosen to have a
signal-to-noise ratio (SNR) of 5 dB at fx and of 20 dB at fy. Importantly, we do not
use a DAR model to simulate such data.

We compared different choices of driver, using DAR models of order (p,m) = (10, 2),
and comparing their negative log-likelihood on a validation set using cross-validation.
We split the signal into 10 parts of equal size, fitted a DAR model on 5 random parts,
and estimating the negative log-likelihood on the 5 other parts, and repeating this
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Figure 4.5 – Same as Figure 4.2, using three neurophysiological dataset: (Top) Human
cortex ECoG, (Middle) rodent striatal LFP, (Bottom) rodent hippocampal LFP.

process 10 times. To fit the models, we first separated the low frequencies from the
high frequencies using a low-pass filter at 20Hz, which gave z and y respectively. We
extracted the driver x from z using different strategies described below, and fitted DAR
models on signal y with driver x.

The first strategy was grid-search, which searched over a set of bandpass filters as
described above. The second strategy used the proposed gradient descent to optimize
freely the filter extracting the driver. In this strategy, we used different initializations,
since the problem is non-convex and thus may lead to different local minima. Initial
filters were either bandpass filters as in the first strategy with center frequency ranging
from 2Hz to 8Hz, or random filters generated with Gaussian white noise. We also
compared with the entire low-pass filter z, and with a linear AR which uses no driver.



88 CHAPTER 4. EXTENSIONS TO DAR MODELS

As a sanity check of the gradient descent strategy, the first simulation used a single-
band (fx,∆fx) = (5, 3) ground-truth driver, and results are presented in Figure 4.1
and Figure 4.2. Both strategies gave the same best results. We also observed that
gradient descent converged to about the same log-likelihood for a large set of reasonable
initializations. However, if the initialization does not capture CFC, the optimization
leads to poorer results, yet better than the linear AR, even on the validation set.

To present the differences between the two strategies, the second simulation used a
bimodal ground-truth driver, built as the sum of two drivers x = x1 +0.4x2, filtered from
Gaussian white noise with respectively (fx1 ,∆fx1) = (5, 3) and (fx2 ,∆fx2) = (14, 3).
Results are presented in Figure 4.3 and Figure 4.4. In this case, the grid-search strategy
could not correctly capture the two bands, and chose a large filter centered at 10Hz.
It performed only marginally better than the full low-pass signal z. In contrast, the
optimization by gradient descent correctly captured the two bands, leading to much
better results.

Empirical data We also validated our approach on three empirical neurophysiological
signals containing CFC (c.f. Subsection 3.1.5. The results presented in Figure 4.5 show
that the gradient descent strategy leads to a lower negative log-likelihood than the
grid-search strategy for the human cortical signal. In this case, the difference could be
related to an asymmetrical shape of the driver spectral peak at 4Hz. This asymmetrical
PSD was also proposed to explain the shift in the minimum in Figure 3.5.

For the rodent striatal signal, the likelihood gain is more subtle, but we witness the
same difference in the PSD shape as in the human cortical signal. Indeed, we observe
that the best filter obtained by gradient descent is asymmetrical, as its PSD decreases
more slowly between 3 and 10Hz than the predefined filter.

For the rodent hippocampal signal, the gradient descent leads to a poorer likelihood
than the grid-search strategy, which probably accounts for some over-fitting. Indeed, we
see in the PSD plot that the best filters are very similar in both strategies. In this case,
the obtained driver might be close to be optimal, and the gradient descent strategy is
more prone to over-fitting since it has more degrees of freedom than the grid-search
strategy. Another possible interpretation is that the driver changes overtime, and it is
thus better to have a more crude estimation of the filter.

4.2 Multivariate PAC

4.2.1 Multivariate PAC with GED

Most electrophysiological recordings are multivariate, in the sense that multiple channels
are recorded at the same time through multiple sensors. For instance, EEG and
MEG recordings can contain more than 300 channels. The information is often highly
redundant across channels, but the multiple channels can be used to extract more
knowledge from low signal-to-noise ratio. Indeed, if a signal is spread with high
similarity on many channels, we can expect some part of the noise to be independent.
The goal of multivariate analysis is to leverage this similarity to improve the robustness
to noise.

As a lot of neurophysiological research uses non-invasive MEG or EEG recordings
containing multiple channels, a multivariate PAC analysis could be of high interest.
PAC is defined as a relation between two univariate signals, or between two frequency
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bands of a single univariate signal. In the case of PAC, one way to use data from
multiple channels is to estimate a single signal using a spatial filter such as in Cohen
(2017). Such reconstructed univariate signal is often referred as a virtual channel. This
method is complementary to univariate PAC metrics which can be applied to the virtual
channel. DAR models can also be applied on such virtual channels.

The method from Cohen (2017) builds spatial filters that maximize the difference between,
say, high-frequency activity that appears during peaks of a low-frequency oscillation
versus high-frequency activity that is unrelated to the low-frequency oscillation. More
specifically, with a multivariate signal over C channels, it builds two covariance matrices,
R ∈ RC×C and S ∈ RC×C , computed on the two different regimes we want to distinguish.
Then it computes the generalized eigen-decomposition (GED) of R and S, which produces
eigenvectors w ∈ RC and eigenvalues λ ∈ R such that:

Sw = λRw (4.9)

Such eigenvectors are easily interpretable when R is invertible, as eigenvectors of R−1S.
The largest eigenvalues correspond to directions which most differentiate S and R. The
eigenvectors are also called spatial filters.

In Cohen (2017), GED is notably applied to estimate PAC. First, a low-frequency band
is chosen. Then the covariance matrix S is computed on the filtered time series, and
the covariance matrix R on the unfiltered time series. The GED is used on S and R to
find a spatial filter corresponding to the low-frequency component. The spatial filter is
the eigenvector corresponding to the highest eigenvalue. It is then used to create the
low-frequency virtual channel.

To create the trough-modulated virtual channel, the troughs of the low-frequency virtual
channel are extracted. Then, the covariance matrix S is computed on the time points
surrounding these troughs, and the covariance matrix R on the entire time series. The
GED is used on S and R to find a spatial filter corresponding to the trough-modulated
component. Figure 4.6 presents a graphical overview of the creation of the trough-
modulated virtual channel. Indeed, it selects the spatial filter corresponding to the
highest variance in peri-trough data, compared to the entire dataset. The two obtained
virtual channels can then be used in any PAC metric, or can be modeled with DAR
models, to quantify the PAC.

One can note that the second spatial filter, corresponding to the trough-modulated
component, is extracted based on the variance of the signal. However, a spectral
modulation is not always associated with a broadband energy modulation. To solve
this weakness, we build upon the GED framework to estimate spatial filters using DAR
models

Using DAR models also remove the need to assume that the spectral modulation happens
between peaks and troughs. Indeed, we discussed in Subsection 3.1.2 that the preferred
phase, i.e. the phase corresponding to the largest amplitude of the modulated bands,
might be different from 0 or π. DAR models make no assumption in this matter, and
are able to estimate PAC with any preferred phase.
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Figure 4.6 – Graphical overview of the method to create a trough-modulated virtual
channel. A low-frequency component is identified (‘Theta comp.’), and covariance
matrices are computed on the basis of the multichannel data surrounding each trough,
and using all data (respectively, S and R matrices). A GED of these matrices provides a
set of eigenvectors (matrix W ). The eigenvector with the largest eigenvalue (diagonal of
matrix Λ) is used as weights to combine data from all channels linearly, which produces
the component that best differentiates trough-related from non-trough-related activity.
Reproduced from Cohen (2017).

4.2.2 Multivariate PAC with DAR models

Model definition Similarly to Cohen (2017), our approach forms two virtual channels
on which we apply the DAR model. The virtual channels are composed of weighted
sums of C signals, corresponding to the C channels.

y =
C∑
c=1

wcyc and x =
C∑
c=1

vcxc, (4.10)

where x, y, xc and yc are univariate signals, and wc and vc are scalars. This formulation
is based on the assumption that the source signal is instantaneously and identically
spread over all sensors, with different gains expressed with the weights wc and vc. This
assumption is particularly relevant for MEG multivariate recordings (Hari and Puce,
2017). Note that we estimate two different filters for the low frequency driver x and the
broad-band signal y.

A naive idea would be to to maximize the likelihood of the model on y, but this idea
might lead the weights to select the uncorrelated part of each channel. Indeed, selecting
weights that cancel a strong source signal and keep only small uncorrelated noise would
lead to a very low variance, and thus a very high likelihood in comparison with a filter
selecting the strong source signal and removing the noise. To tackle this issue, we
maximize instead the likelihood ratio between the DAR model and a linear AR model:

J = log(L)− log(L̃) , (4.11)

where the tilde ˜ indicates that it is related to the AR model, and the absence of tilde
indicates that it is related to the DAR model. We have:

−2 log(L) = T log(2π) +
T∑

t=p+1

ε(t)2

σ(t)2 + 2
T∑

t=p+1
log(σ(t)) (4.12)

−2 log(L̃) = T log(2π) + 1
σ̃2

T∑
t=p+1

ε̃(t)2 + 2(T − p) log(σ̃) . (4.13)
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Maximizing the likelihood ratio corresponds to maximizing the variance explained by
the DAR model which was not explained by the AR model. Thus, the likelihood of
the AR model is used as a normalization, to avoid constructing a low variance virtual
channel.

4.2.3 Model estimation

We propose to estimate this model iteratively using three steps. First, we estimate
the DAR model as in Chapter 2. Then we estimate the driver spatial filter v as in
Section 4.1. Indeed, the spatial filter formulation of (4.10) is identical to the formulation
of (4.1), so we can directly reuse the same gradient descent scheme. Finally, we estimate
the signal spatial filter w with a dedicated procedure described below. The three steps
are repeated multiple times before convergence.

Signal spatial filter estimation We estimate the signal spatial filter w by maxim-
izing the log-likelihood difference (4.11):

J = K ′′ + 1
2

T∑
t=p+1

ε̃(t)2

σ̃2 −
1
2

T∑
t=p+1

ε(t)2

σ(t)2 , (4.14)

where K ′′ is constant. Note that the AR and DAR models are here fixed. In particular,
σ and σ̃ are constant and do not depend on the filter w. Using the linearity of AR
models, we can write:

ε(t) = y(t) +
p∑
i=1

ai(t)y(t− i) (4.15)

=
C∑
c=1

wc

yc(t) +
p∑
i=1

ai(t)yc(t− i)

 (4.16)

=
C∑
c=1

wcεc(t). (4.17)

Using this expression in (4.14), we obtain:

T∑
t=p+1

ε(t)2

σ(t)2 =
C∑
c=1

C∑
c′=1

wcwc′

T∑
t=p+1

εc(t)εc′(t)
σ(t)2 = w>Rw, (4.18)

where R ∈ RC×C is defined by:

Rc,c′ =
T∑

t=p+1

εc(t)εc′(t)
σ(t)2 . (4.19)

If we also define S ∈ RC×C in a similar way:

Sc,c′ = 1
σ̃2

T∑
t=p+1

ε̃c(t)ε̃c′(t), (4.20)

then we can rewrite the log-likelihood difference:

J = K ′′ + w>Sw − w>Rw (4.21)
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Algorithm 4.1: Estimation of virtual channels to model PAC on multivariate sig.
Input : Multivariate raw signal z ∈ RC×T , temporal filter h, orders (p,m)
Extract signals y and drivers x from z, using filter h as in Subsection 3.1.1,
Compute covariance matrices R and S computed respectively on x and y,
Initialize driver spatial filter v with GED on R and S,
Initialize signal spatial filter w with Gaussian white noise,
for n = 1 to N do

Estimate DAR (p,m) model coefficients (A,B) as in Algorithm 2.1,
Estimate AR (p, 0) model coefficients (Ã, B̃) as in Algorithm 2.1,
Compute the corresponding multivariate residuals ε and ε̃,
Compute covariance matrices R and S computed respectively on ε and ε̃,
Estimate the signal spatial filter w with GED on R and S,
Estimate the driver spatial filter v with gradient descent, as in Section 4.1,

return v, w,A,B

Therefore, the solution w of our problem argmaxw J(w) is an eigenvector of the general-
ized eigen-decomposition of S and R. More precisely, the log-likelihood difference J is
maximum for the largest eigenvalue (Fukunaga, 2013). The entire algorithm is detailed
in Algorithm 4.1.

We see that the estimation through GED makes our approach very close to the method
of Cohen (2017). The difference is in the covariance matrices used. In Cohen (2017),
the covariance matrices are typically computed on the raw signal, using the peri-peak
and peri-trough time points. In our case, the covariance matrices are computed on the
residuals ε(t) and ε̃(t) using all the time points. Therefore, the method of Cohen (2017)
assumes a variance difference between the peaks and the troughs of the slow oscillation,
whereas our method assumes a variance difference between an AR model and a DAR
model.

Driver’s filter In Section 4.1, we demonstrated how to estimate the driver based
on a set of potential drivers. We used it notably for estimating a temporal filter h
which was used to extract the driver from the low-pass original time-series zx. We used
x = h ∗ zx =

∑N
n=1 hnzx(t − n). In that case, the potential drivers were the delayed

signals xn(t) = zx(t− n).

In this section, we reuse this method, but this time to estimate a spatial filter, to extract
the driver as a virtual channel. In this case, the potential drivers are the band-pass
filtered signals on each channel xc(t) = h∗zc(t), where zc is the original signal of channel
c. We use x =

∑C
c=1 vc(h ∗ zc(t)). Note that we assume here that the temporal filter h

is given. To estimate h, we resort to a grid-search strategy over a bank of parametric
bandpass filters.

Model initialization Our model is non-convex and is thus sensitive to the initializ-
ation. Different initializations may lead to different local minima. In particular, the
initial spatial weights need to lead to virtual channels with PAC. Indeed, if the first
DAR model fail to capture some PAC, the subsequent spatial weights refinements will
not improve the model.
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(a) Preferred phase φ0 = 0. (b) Preferred phase φ0 = π/2.

Figure 4.7 – Spatial filters associated with the three dipole sources θ0, γ1 and γ2: (top)
simulated filters, (middle) filters estimated with GED, (bottom) filters estimated with
DAR models. With a preferred phase φ0 = 0, both methods correctly estimate the
spatial filters, without being distracted by the strong γ2 dipole nearby. With a preferred
phase φ0 = π/2, the GED method fails to estimate γ1 contrary to the method using
DAR models.

To tackle this issue, a first possibility is to use different random weights initializations,
and to select the results with the highest log-likelihood difference J . Another possibility
is to use the method of Cohen (2017) as an initialization, and use our method as a
refinement step instead of simply using DAR models on the two initial virtual channels.

In our experiments, we saw that using random weights for the initial driver spatial filter
v was not robust. Therefore, we used GED to estimate this initial spatial filter. Note
that this makes no assumption on the coupling, except about the temporal filter h used
to bandpass the drivers on each channel.

To initialize the spatial filter w, we prefer not using the GED as in Cohen (2017), since
it makes an assumption on the preferred phase of the amplitude modulation, and since
it supposes a modulation of the variance of the signal. On the contrary, our method
based on DAR models makes no assumption on the preferred phase, and supposes a
modulation of the PSD. Therefore, we initialize the spatial filter w with Gaussian white
noise. We noted on our experiments that the filter w was well estimated even with a
poor initial filter, provided that the initial driver spatial filter v was good.

4.2.4 Experiments

To validate our approach, we reused the simulation settings described in Cohen (2017,
Method 1), using their MATLAB code available online. The method first simulates
three source signals: a theta rhythm θ0 at 6Hz, with small amplitude and frequency
fluctuations, a gamma rhythm γ1 at 40Hz modulated in amplitude by the theta rhythm,
and a gamma rhythm γ2 at 50Hz modulated in amplitude by an independent signal.
The third signal was serving as “distractor”, and had twice the average amplitude of
the second signal. Each signal was associated with a dipole localization, and projected
on 64 MEG sensors. A pink noise, i.e. noise with a 1/f PSD, was added to all sensors.
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Figure 4.8 – Log-likelihood difference J over a grid of parameters fx and ∆fx, computed
on left-out data using cross-validation.

Then we compared the spatial filters obtained with the GED method of Cohen (2017),
and with our method based on DAR models. For DAR models, we used a grid-search
over the driver filter’s center frequency fx and bandwidth ∆fx, with fx ∈ J2, 10K and
∆fx ∈ {0.25, 0.5, 1, 2}, and selected automatically the best parameters based on the
log-likelihood difference computed over cross-validation (see Figure 4.8). For the GED
method, we assumed that the ground-truth parameters were known. We can see in
Figure 4.7 that the spatial filters are correctly estimated by both methods, with a
preferred phase φ0 = 0, i.e. when the amplitude modulation is maximal at the troughs.
With a preferred phase φ0 = π/2, the GED method fails to estimate the filter associated
with γ1, since it assumes that the modulation happens at the troughs. The method
based on DAR models correctly estimate this filter since it is invariant with the preferred
phase.

Additional experiments are required to compare in depth the two methods. Note however
that the DAR approach is slower than the GED method, but brings several advantages
in term of model selection, invariance to the preferred phase, and possibility to detect
frequency modulation without overall variance modulation.

4.3 Spectro-temporal receptive fields

4.3.1 Spectro-temporal receptive fields

In cognitive neuroscience, predictive modeling comes with two flavors, encoding models
and decoding models. Encoding models consider stimulus features to predict brain
activity, while decoding models consider brain activity features to predict the stimulus.
A nice introduction to both approaches is available in (Holdgraf et al., 2017).

Decoding models have grown popularity in natural image reconstruction from fMRI
data (Kay et al., 2008), or in speech reconstruction from ECoG data (Brumberg et al.,
2010, Pasley et al., 2012). Other decoding models aim to classify the stimuli instead
of reconstructing them. Some successes have for instance been observed in classifying
phonemes (Chang et al., 2010), words (Kellis et al., 2010), or semantic information
(Wang et al., 2011) from ECoG recordings. Encoding models have also had remarkable
successes in predicting fMRI features from visual stimuli (Naselaris et al., 2011), and in
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Figure 4.9 – Example of model fitting procedure. Auditory spectrograms of sound
and evoked high-frequency broadband (HFB) activity (top, first/second columns) is
used to fit a linear regression model, resulting in a set of model coefficients (STRF,
lower left). This STRF is convolved with a held-out auditory spectrogram (top, third
column) to generated a predicted HFB activity trace (lower right). The goodness of fit
(cross-validated R2) is calculated between the predicted response and the actual HFB
activity in the held-out trial (top, fourth column). Reproduced from (Holdgraf et al.,
2016).

predicting ECoG features from audio stimuli (Mesgarani et al., 2014).

In this study, we consider encoding models of ECoG signals, recorded jointly with audio
stimuli. The typical approach starts by building a spectrogram, which decomposes the
audio stimuli into a time-frequency representation. In practice, a number (e.g. 128) of
linear filters are applied on the signal to build this spectrogram. The center frequencies
of the filters are usually logarithmically spaced, to mimic the human auditory system
(Chi et al., 2005). Then, the spectrogram is concatenated multiple times with a range
of time lags, to account for non-instantaneous effects. These features are then used in
linear regression models to predict the gamma band envelop of ECoG signals (Holdgraf
et al., 2016).

An interesting outcome of such modeling is the set of coefficients of the fitted linear
regression models. Indeed, each spectro-temporal audio feature is weighted by the
model with respect to its predictive power. The coefficients thus form a so-called
spectro-temporal receptive field (STRF), which maps the neural response to the relevant
acoustic features. STRFs has been used to track which brain region responds to which
acoustic feature (Theunissen et al., 2000, Depireux et al., 2001), or to describe tuning
shifts when comparing different stimulus conditions (Holdgraf et al., 2016). Figure 4.9
presents a typical STRF pipeline, reproduced from (Holdgraf et al., 2016).

Linear models are used in encoding approaches for their simplicity and their inter-
pretability. However, such analysis is limited to predicting a slowly varying time-series
such as the gamma rhythm envelop. A different approach would be to model the entire
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ECoG signals, without using any filtering or envelop extraction. Reformulating the
problem, we would like to model a neurophysiological time-series which may contain
amplitude modulations related to a known driving stimulus. We see that DAR models
are natural candidates for such modeling approach.

4.3.2 STRF and DAR models

To tackle this encoding problem, we simply use DAR models on the ECoG signal y.
Different audio features can be use as the driver signal x.

A first natural candidate for the driver x is the raw audio signal itself z. However, the
sampling frequency of the audio signal (e.g. 48 kHz) is much higher than the sampling
frequency of the ECoG signal (e.g. 1 kHz). To be able to use in a DAR model, we need
to have the same sampling frequency. We cannot simply low-pass filter and down-sample
the audio signal, since we would lose a large part of the audio information, contained
above 1 kHz. A better driver candidate is the envelop of the audio signal. Indeed, the
envelop does not contain much information in the high frequencies, and can thus safely
be low-pass filter and down-sampled.

Another approach is to avoid defining arbitrarily a driver signal, but to estimate it from
a set of potential drivers, as described in Section 4.1. The driver x is then composed of
a weighted sum of potential drivers xn:

x(t) =
N∑
n=1

αnxn(t). (4.22)

A natural set consists in multiple band-pass filtered versions xn = wn ∗ z of the audio
signal z, where wn is a band-pass filter. Each potential driver can also be present
multiple times in the set, with different time lags τ . The driver reads:

x(t) =
N∑
n=1

τmax∑
τ=0

αn,τwn ∗ z(t− τ). (4.23)

This leads to a very strong parallel with the STRF described earlier. Indeed, the
obtained weights αn,τ form a spectro-temporal representation of relevant audio features
to drive the DAR model on the ECoG signal. Importantly, we model all the frequencies
at the same time, without any filtering or envelop extraction step.

For simplicity, we will note the weights αn in the rest of this study.

4.3.3 Experiments

We present here a number of exploratory experiments, using data from Holdgraf et al.
(2016). The data consists in a grid of 32 ECoG channels, localized in the vicinity of the
auditory cortex, recorded simultaneously with the audio stimulus. The audio stimulus
was a succession of speech samples, which last a few seconds each, interlaced with a few
seconds of silence.

In the first experiment, we applied univariate DAR models separately on each ECoG
channel, using the audio envelop as the driver x. More specifically, we low-pass filtered
(at 10Hz) the absolute value of the audio signal, and used the Hilbert transform to
obtain a complex-valued driver. For simplicity, we fixed the parameters to p = 10,
m = 2, and τ = 0, and compared with cross-validation the performances of DAR models
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Figure 4.10 – Cross-validated goodness of fit on each channel of the ECoG grid. (Left)
R2 score of the linear regression model, trained on the delayed audio spectrogram to
predict the gamma rhythm envelop (reproduced from Holdgraf et al. (2016)). (Right)
Log-likelihood difference of DAR models versus AR models, trained on the raw ECoG
channels using the audio envelop as the driver. Both methods consistently select the
channels located on the auditory cortex.

versus AR models. The log-likelihood difference on out-of-sample data is presented in
Figure 4.10 (right). We see that the log-likelihood difference is positive only on the
channels located on the auditory cortex. A negative log-likelihood difference is observed
on the other channels, showing that DAR models are over-fitting compared to AR
models. For comparison, we also show in Figure 4.10 (left) the cross-validated R2 score
of the linear regression model, trained on the delayed spectrogram to predict the gamma
rhythm envelop, as reported in Holdgraf et al. (2016).

Then we used a grid-search on parameters (p,m, τ), using cross-validation to select the
best parameters. Figure 4.13 presents the results on all 32 channels, where we plot the
log-likelihood difference between DAR and AR models. The horizontal axis corresponds
to the delay parameter τ , each line corresponds to a parameter m ∈ {0, 1}, and we
only show the results for the parameters p leading to the highest score. The auditory
channels (3, 4, 5, 11, 12, 13, 18, 19) lead to a strong performance of DAR models versus
AR models, which means that they do contain a spectral modulation correlated with
the speech stimulus driving signal.

We then focused the investigation on channels with a strong log-likelihood difference,
e.g. channel number 5. On this channel, we compared the log-likelihood of DAR models
using different drivers, with a cross-validation scheme. The different drivers were:
the speech envelop; a binary signal separating speech from silence; a weighted driver
estimated over a set of potential drivers from the delayed spectrogram. The results are
presented in Figure 4.11, where we show the modulated PSD with respect to the drivers,
with the log-likelihood score in the title (with in brackets the standard deviation over
cross-validation folds).

The first observation concerns the obtained PSD modulation. In this modulation, we
can see a low frequency decrease and a high frequency increase in the ECoG signal in
the presence of speech. This effect has already been reported, for instance by Pasley
et al. (2012). Note that we did not use filtering on the ECoG signal to create this figure;
the PSD modulation is directly derived from the fitted DAR model.

The second observation concerns the similarity of the results. Indeed, all three drivers
lead to extremely similar PSD modulation, and the log-likelihood scores is not signific-
antly different. In particular, the binary driver performs slightly better than the speech
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Figure 4.11 – Power spectral density (PSD) modulation with respect to the driver.
(Left) Speech envelop driver, (middle) binary speech driver, (right) weighted driver over
a spectrogram (see Figure 4.12). The log-likelihood score is shown in the title, with
in brackets the standard deviation over cross-validation folds. Note that all drivers
perform equally well, leading to extremely similar PSD modulations.

Figure 4.12 – Spectro-temporal receptive field (STRF) estimated with a DAR model.
Note that this figure was cherry-picked over multiple restarts and optimization para-
meters.

envelop, which means that the extracted effect does not use much information in the
speech intensity. The driver obtained from a weighted sum over the spectrogram is
not significantly better, despite a much heavier optimization procedure. This might
show the limit of our approach, showing that DAR models only focus on the main PSD
modulation, and that more subtle effects are difficult to capture.

Figure 4.12 shows the weights estimated to create the third driver, thus creating a
DAR-estimated STRF. Note that this figure was cherry-picked over multiple restarts
and optimization parameters, since the estimating procedure is still quite unstable and
non-convex.

Estimating STRF reliably through DAR models still needs improvement to be on par
with the simplicity and robustness of linear regression model. Indeed, the high number of
parameters for the driver makes the non-convex estimation not very reliable, in addition
to the higher computational cost. A possible improvement could be found using some
sort of regularization. However, DAR models perfectly fit in this encoding modeling
approach, and we believe that they provide an excellent framework for legitimate and
reproducible studies.
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Figure 4.13 – Log-likelihood difference between DAR models and AR models, over a
grid-search of parameters. The horizontal axis corresponds to the delay parameter τ ,
each line corresponds to a parameter m ∈ {0, 1}, and we only show the results for the
parameter p leading to the highest score. The channel layout is displayed on the right
panel.
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In this chapter, we address the present need in the neuroscience community to better
capture the complex morphology of brain waves. Our approach is based on convolutional
sparse coding (CSC) models, which are dictionary learning models using shift-invariant
representations and strong sparsity assumptions.

We propose efficient optimization schemes leading to state-of-the-art performances.
We then extend CSC models to cope with brain recordings challenges, such as severe
artifacts, low signal-to-noise ratio, and long multivariate signals. These extensions are
critical to be able to use CSC models on brain recordings.
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The source code of all the methods described in this chapter is publicly available at
https://alphacsc.github.io/, with documentation, tests, and multiple examples.

This chapter covers the following publications:

• Jas, M., Dupré la Tour, T., Şimşekli, U., and Gramfort, A. (2017). Learning the
morphology of brain signals using alpha-stable convolutional sparse coding. In
Advances in Neural Information Processing Systems 30 (NIPS), pages 1099–1108
• Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018b). Multivariate
convolutional sparse coding for electromagnetic brain signals. In Advances in
Neural Information Processing Systems (NIPS)

5.1 Convolutional sparse coding

5.1.1 Convolutional sparse coding model

Convolutional sparse coding (CSC) is a mathematically principled formulation of
dictionary learning with shift-invariant sparse representations. It was introduced by
Grosse et al. (2007), and consists in minimizing the following expression:

argmin
{dk},{zn

k
}

N∑
n=1

1
2

∥∥∥∥∥∥xn −
K∑
k=1

znk ∗ dk

∥∥∥∥∥∥
2

2

+ λ
K∑
k=1
‖znk ‖1 ,

s.t. ‖dk‖22 ≤ 1, ∀k,

(5.1)

where {xn}Nn=1 ⊂ RT are N observed signals of length T , {dk}Kk=1 ⊂ RL are the K
temporal atoms of length L we aim to learn, {znk }Kk=1 ⊂ RT−L+1 are K signals of
activations (a.k.a. the code) associated with xn, and λ > 0 is the regularization
parameter.

The objective function (5.1) has two terms, an `2 data fitting term that corresponds to
assuming an additive Gaussian noise model, and a regularization term that promotes
sparsity with an `1 norm (Tibshirani, 1996). The regularization parameter is called
λ > 0. The model enforces that dk lies within the unit sphere, which prevents the scale
ambiguity between dk and znk . Without this constraint, any solution (dk, znk ) could be
improved using (γdk, γ−1znk ) for any scalar γ > 1, which gives smaller regularization
cost for the same data fitting term.

In this work, we also assume that the entries of znk are positive, which means that
the temporal patterns are present each time with the same polarity. This positivity
constraint is not present in the original CSC model (Grosse et al., 2007). Our model
reads:

argmin
{dk},{zn

k
}

N∑
n=1

1
2

∥∥∥∥∥∥xn −
K∑
k=1

znk ∗ dk

∥∥∥∥∥∥
2

2

+ λ
K∑
k=1
‖znk ‖1 ,

s.t. ‖dk‖22 ≤ 1, and znk ≥ 0, ∀k, n.

(5.2)

General estimation scheme The model (5.2) is not jointly convex in dk and znk ,
which means that multiple local minima may exist, and that we cannot be sure that
a given minimum is a global minimum. Therefore, different initialization may lead to
different local minima, which can be compared with the loss function defined in (5.2).

https://alphacsc.github.io/


5.1. CONVOLUTIONAL SPARSE CODING 103

However, we can note that the model is convex in both block of variables {dk} and {znk }.
Such property naturally lead to a block-coordinate descent, where we alternatively fix
one block of variables and decrease the loss function with updates on the second block
(Grosse et al., 2007). We call Z-step the update of the activations {znk } while keeping
the atoms fixed, and D-step the update of the atoms {dk} while keeping the activations
fixed.

5.1.2 Model estimation: Z-step

Given a set {dk} of K fixed atoms and a regularization parameter λ > 0, the Z-step
aims to retrieve the NK activation signals znk ∈ RT̃+ associated to the signals xn ∈ RP×T
by solving the following `1-regularized optimization problem:

argmin
{zn

k
}

N∑
n=1

1
2

∥∥∥∥∥∥xn −
K∑
k=1

znk ∗ dk

∥∥∥∥∥∥
2

2

+ λ
K∑
k=1
‖znk ‖1 ,

s.t. znk ≥ 0, ∀k, n.

(5.3)

This problem is jointly convex in all the activation signals znk and can thus be efficiently
solved. In Chalasani et al. (2013), the authors proposed an algorithm based on FISTA
(Beck and Teboulle, 2009) to solve it. Bristow et al. (2013) introduced a method based
on ADMM (Boyd et al., 2011) to compute efficiently the activation signals znk . These
two methods are detailed and compared by Wohlberg (2016b), which also used the fast
Fourier transform (FFT) to accelerate the computations. Finally, Kavukcuoglu et al.
(2010) adapted the greedy coordinate descent (GCD) to solve this convolutional sparse
coding problem.

In this work, we propose two different approaches to solve this problem. First, we
make use of L-BFGS (Byrd et al., 1995) to improve on first order methods, which
leads to state of the art computational speed. We also propose to use locally greedy
coordinate descent (LGCD) (Moreau et al., 2018), to alleviate linear dependence in the
signal length T . It makes efficient use of the activations sparsity to greatly reduce the
computational cost. This method is described in Subsection 5.3.2, as it is designed for
our multivariate CSC model, but it can also be applied on univariate CSC.

Note that problem (5.3) is independent for each signal xn. The computation of each zn
can thus be parallelized, independently of the technique selected to solve the optimization.
Therefore, we omit the superscript n in this subsection to simplify the notation.

L-BFGS-B The L-BFGS algorithm (Byrd et al., 1995) is a quasi-Newton method
which estimates an approximation of the Hessian using gradient computations in order
to speed up the iterative descent algorithm. It however requires the problem to be
differentiable.

The first term in (5.3) is easily differentiable. Indeed, we can note that the convolution
operator is linear, so we can rewrite zk ∗ dk = Dkzk, where Dk is a large Toeplitz matrix
that we never construct in practice. This notation is just a way to understand this
problem as a linear problem.

The second term in (5.3) is an `1 norm, which is not differentiable in zero. This
non-differentiability is usually tackled with proximal algorithms like FISTA (Beck and
Teboulle, 2009). However, as we added the additional positivity constraint zk ≥ 0,
we can consider the `1 norm as differentiable on the constraint set [0,∞[. We can
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Algorithm 5.1: Calling L-BFGS-B for the Z-step
Input : Signal x, atoms {dk}, initialization {zk}
Define func : Given {zk}, return the loss function, computed with (5.3)
Define grad : Given {zk}, return the gradient ∇zk

for all k, computed with (5.4)
Define B : all variables zk[t] are constrained in the box [0,∞[
Run : scipy.optimize.fmin_l_bfgs_b (func, {zk}, grad, B)

thus use the L-BFGS-B algorithm, i.e. the L-BFGS algorithm with a box constraint:
0 ≤ zk[t] <∞.

We only need to compute the gradient ∇zk
of the objective function with respect to zk:

∇zk
= d���k ∗

x− K∑
l=1

zl ∗ dl

+ λ
K∑
l=1

zl . (5.4)

where the left convolution is performed on the “valid” set to obtain the correct dimension
of the gradient ∇zk

∈ RT̃ . Using the L-BFGS algorithm, we are able to solve the Z-step
problem with state-of-the-art computational speed, as we will show in the experiments
Subsection 5.1.5. In our experiments, we used the implementation of L-BFGS-B available
in SciPy (Jones et al., 2001), and we give more details on how to call this function in
Algorithm 5.1.

5.1.3 Model estimation: D-step

Given KN fixed activation signals znk ∈ RT̃ , associated to signals xn ∈ RT , the D-step
aims to update the K temporal patterns dk ∈ RL, by solving:

argmin
{dk}

N∑
n=1

1
2

∥∥∥∥∥∥xn −
K∑
k=1

znk ∗ dk

∥∥∥∥∥∥
2

2

,

s.t. ‖dk‖22 ≤ 1, ∀k.

(5.5)

This optimization problem turns out to be a constrained least-squares problem. This
problem can be solved either in the time domain or in the Fourier domain (Grosse
et al., 2007, Heide et al., 2015, Wohlberg, 2016b). The Fourier transform simplifies the
convolutions that appear in least-squares problem, but it also induces several difficulties,
such as that the atoms dk have to be in a finite support L, an important issue ignored
in the seminal work of (Grosse et al., 2007) and addressed with an ADMM solver in
(Heide et al., 2015, Wohlberg, 2016b). Interestingly, the dual problem is also a smooth
constraint problem yet with a simpler positivity box constraint. We thus propose to
optimize the dual problem with L-BFGS-B.

In our multivariate CSC model described in Subsection 5.3.2, we also propose a projected
gradient descent (PGD) method, since using L-BFGS on the dual problem is not possible.
The PGD method can also be used on univariate CSC, yet during our experiments, we
found that using the quasi-Newton L-BFGS solver turned out to be more efficient than
any accelerated first order method in either the primal or the dual.
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L-BFGS-B on the dual problem As when solving for the activations zk, we can
rewrite the convolution and the summation over the atoms as a large linear operation
Znd, where d is the concatenation of all dk. It leads to the simpler formula:

argmin
d

N∑
n=1

1
2‖x

n − Znd‖22, s.t. ‖dk‖22 ≤ 1, ∀k. (5.6)

If not for the constraint, this is a classic least square problem which has a known
closed-form solution:

d∗ =

 N∑
n=1

Zn>Zn

−1
N∑
n=1

Zn>xn (5.7)

Given the constraint, we need to use iterative algorithm to approximate the solution.
This problem can also be solved on the dual space, which is derived from the following
Lagrangian:

g(d, β) =
N∑
n=1

1
2‖x

n − Znd‖22 +
K∑
k=1

βk(‖dk‖22 − 1) s.t. βk ≥ 0, ∀k, (5.8)

where β = (β1, β2, ..., βK) are the dual variables. Therefore, the dual problem is:

argmax
d,β

g(d, β) = argmax
β

g(d∗(β), β) (5.9)

where d∗(β), the primal optimal, is given by:

d∗(β) =

 N∑
n=1

Zn>Zn + β̄

−1
N∑
n=1

Zn>xn (5.10)

with β̄ = diag([1β1,1β2, ...,1βK ]) ∈ RKL, and 1 ∈ RL. The gradient for the dual
variable βk is then given by:

∂g(d∗, β)
∂βk

= ‖d∗k‖22 − 1, (5.11)

with d∗k computed from (5.10). We can solve this iteratively using L-BFGS-B taking
into account the positivity constraint βk ≥ 0 for all k. It amounts to computing the
primal optimal at each step, then the dual gradients according to the updated primal,
then updating the dual using the gradient and continuing this way until convergence.
Here again, we used the implementation of L-BFGS-B available in SciPy (Jones et al.,
2001), and we give more details on how to call this function in Algorithm 5.2.

Block coordinate descent (BCD) What we have described so far solves for all the
atoms simultaneously. However, it is also possible to estimate the atoms sequentially
one at a time using a block coordinate descent (BCD) approach, as in the work of
(Mairal et al., 2010). In each iteration of the BCD algorithm, a residual rnk is computed
as given by:

rnk = xn −
∑
k′ 6=k

Znk′dk′ (5.12)

and corresponding subproblem (5.6) becomes:

argmin
dk

N∑
n=1

1
2‖r

n
k − Znk dk‖22, s.t. ‖dk‖22 ≤ 1, ∀k. (5.13)
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Algorithm 5.2: Calling L-BFGS-B for the D-step
Input : Signal x, activations {zk}, initialization β
Define func : Given β, compute the primal optimal d∗(β) with (5.10)

Return the Lagrangian g(d∗(β), β), computed with (5.8)
Define grad : Given β, compute the primal optimal d∗(β) with (5.10)

Return the gradient of the Lagrangian, computed with (5.11)
Define B : All variables βk are constrained in the box [0,∞[
Run : scipy.optimize.fmin_l_bfgs_b (func, β, grad, B)

Table 5.1 – Computational complexities of each step.

Step Method Computation Computed Complexity

Z-step L-BFGS Gradient evaluation multiple times NKTL

D-step L-BFGS Precomputation once NK2TL2

D-step L-BFGS Gradient evaluation multiple time K3L3

D-step L-BFGS with BCD Precomputation once NKTL
D-step L-BFGS with BCD Gradient evaluation multiple time KL2

which is solved in the same way as subproblem (5.6).

In the simultaneous case, we construct one linear problem in O(NK2TL2) and one
iteration costs O(L3K3), since we need to inverse a matrix in RKL×KL. However, in
the BCD strategy, we construct K linear problems in O(NL2T ) and one iteration costs
only O(L3), since we only need to inverse matrices in RL×L. Actually, we can even
use the fact that for one atom k, the matrix

∑N
n=1(Znk )TZnk has a Toeplitz structure,

i.e. it is constant along each diagonal. In this case, we can construct K linear problems
in only O(NLT ) and one iteration costs only O(L2). Computational complexities are
summarized in Table 5.1.

5.1.4 Model initialization

As the CSC problem is non-convex, different initializations might lead to different local
optima. Therefore, the initialization is a critical part of the model estimation. As we
start the optimization with a Z-step, the initialization only concerns the atoms, and
the activations are simply initialized with zeros.

Chunk initialization The activations sub-problem (Z-step) is regularized with an
`1-norm which induces sparsity: The higher the regularization parameter λ, the higher
the sparsity. Therefore, there exists a value λmax above which the sub-problem solution
is always zeros (Hastie et al., 2015). As λmax depends on the atoms dk and on the
signals xn, its value changes after each D-step. In particular, its value might change a
lot between the initialization and the first D-step. This is problematic since we cannot
use a regularization λ above this initial λmax, even though the following λmax might be
higher.
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The standard strategy to initialize CSC methods is to generate random atoms with
Gaussian white noise. However, as these atoms generally poorly correlate with the
signals, the initial value of λmax is low compared to the following ones. For example, on
the MEG dataset described later in Subsection 5.3.5, we found that the initial λmax is
about 1/3 of the following ones (using L = 32).

To fix this problem, we propose to initialize the dictionary with random chunks of
the signal. We noticed on the MEG dataset that the initial λmax was then about the
same values as the following ones, which allows to use higher regularization parameters,
leading to sparser activations in the results.

KMC2 initialization A potential limitation of the chunk initialization is when a same
pattern is present multiple times in the initial atoms. Therefore, we also investigated a
different initialization based on a Markov chain Monte-Carlo (MCMC) method called
AFK-MC2 (Bachem et al., 2016). This method was developed to initialize clustering
algorithms. It iteratively adds a new initial centroid using random sampling, with a
random rejection criterion based on the distance of the new centroid to the previous
ones. Therefore, the method tends to select centroids that are far from each other, for a
given distance.

In our case, we would like to use a distance which takes into account the shift invariance
of the CSC model. Therefore, we used the AFK-MC2 algorithm on temporal chunks of
the signal, using a custom convolutional distance:

f(d, d′) = min
τ∈J−L/2,L/2K

‖dτ − d′‖2 , (5.14)

where dτ [t] = d[t− τ ].

This strategy leads to better initializations than the random chunk strategy, as evaluated
by the loss function after one Z-step. Indeed, in our experiments, the initial atoms
given by the AFK-MC2 strategy were more diverse than with random chunks. However,
it did not consistently lead to better minima in the sense of the loss function, nor lead
to faster convergence. The qualitative evaluation of the obtained minima did not reveal
a noticeable improvement. Therefore, we did not used this scheme in the presented
results. Note that this conclusion could be different with a different evaluation, e.g. with
a subsequent classification task based on the learned atoms or activations.

5.1.5 Experiments

In order to evaluate our approach, we conducted several experiments on both synthetic
and empirical data. First, using simulations, we compared the CSC approach with
two competing dictionary learning methods with shift-invariant sparse representations
(Jost et al., 2006, Brockmeier and Príncipe, 2016). Then, we showed that our proposed
optimization scheme for CSC provides significant improvements in terms of convergence
speed over the state-of-the-art CSC methods. Finally, we considered LFP data, where
we illustrated that our algorithm can reveal interesting properties in electrophysiological
signals without supervision.

Dictionary learning with shift-invariant sparse representations In this syn-
thetic data experiment, we illustrate the robustness of CSC in the presence of corrupted
observations, compared to two competing state-of-art methods previously applied to
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Brockmeier et al. 

Atom 1
Atom 2
G. Truth

MoTIF CSC

Brockmeier et al. MoTIF CSC

Brockmeier et al. MoTIF CSC

Figure 5.1 – Simulation to compare state-of-the-art dictionary learning methods applied
to neural time series against CSC. From top to bottom row, we used 0%, 10%, and 20%
of high noise trials.

neural time series: MoTIF (Jost et al., 2006) and a method base on matching pursuit
(Brockmeier and Príncipe, 2016).

We simulated N = 100 trials of length T = 512 by first generating K = 2 zero-mean
and unit-norm atoms of length L = 64. The simulated atoms are shown in dashed lines
in Figure 5.1. The activation instants were integers drawn from a uniform distribution
in J0, T − LK. The amplitude of the activations were drawn from a uniform distribution
in [0, 1]. Atoms were activated only once per trial and were allowed to overlap. The
activations were then convolved with the generated atoms and summed up as in the
CSC model definition (5.2). We corrupted a fraction of the trials (0%, 10%, or 20%)
with strong Gaussian noise of standard deviation 0.1, i.e. one order of magnitude higher
than in other trials. We used a regularization parameter of λ = 0.2.

Starting from 10 random initializations, the estimated atoms with the smallest `2
distance with the true atoms are shown in Figure 5.1. In the artifact-free scenario,
all algorithms perform equally well, except for MoTIF (Jost et al., 2006) that suffers
from the presence of activations with varying amplitudes. This is because it aligns
the data using correlations before performing the eigenvalue decomposition, without
taking into account the strength of activations in each trial. The performance of the
method described in Brockmeier and Príncipe (2016) degrades as the level of corruption
increases. On the other hand, CSC is clearly more robust to the increasing level of
corruption and recovers reasonable atoms even when 20% of the trials are corrupted.

CSC speed performances We then show that our optimization strategy based on
L-BFGS-B outperforms state-of-the-art CSC solvers in terms of convergence speed.
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Figure 5.2 – Comparison of state-of-the-art methods with our approach. The y-
axis shows the objective function relative to the obtained minimum for each run:
(f(x) − f(x∗))/f(x∗). Each curve is the geometrical mean over 24 different random
initializations.

Using the same synthetic dataset as in previous experiment, we set N = 100, T = 2000
and λ = 1, and used different values for K and L. The Gaussian noise standard deviation
was set to 0.01 We monitored the convergence of ADMM-based methods by Heide et al.
(2015) and Wohlberg (2016b) against our CSC algorithm, using both a single-threaded
and a parallel version for the Z-step. In this benchmarks, we used the L-BFGS method
for the Z-step, and the L-BFGS with BCD method for the D-step. All algorithms used
a single thread, except “LBFGS - 4 parallel” which uses 4 threads during the Z-step.

As the problem is non-convex, even if two algorithms start from the same point, they
are not guaranteed to reach the same local minimum. Hence, for a fair comparison, we
use a multiple restart strategy with averaging across 24 random seeds. Note that CSC
can be viewed as a biconvex problem, for which global convergence guarantees can be
shown under certain assumptions (Agarwal et al., 2014, Gorski et al., 2007). However,
we observed that it is required to use multiple restarts, implying that these assumptions
are not satisfied in this particular problem.

During our experiments we have observed that the ADMM-based methods do not
guarantee the feasibility of the iterates. In other words, the norms of the estimated
atoms might be greater than 1 during the iterations. To keep the algorithms comparable,
when computing the objective value, we projected the atoms to the unit ball and
scaled the activations accordingly. To be strictly comparable, we also imposed a
positivity constraint on these algorithms. This is easily done by modifying the soft-
thresholding operator soft(x, λ) = sign(x)(|x| − λ) to be a rectified linear function
ReLu(x, λ) = max(x− λ, 0).

In Figure 5.2, we illustrate the convergence behaviors of the different methods. Note
that the y-axis is the precision relative to the objective value obtained upon convergence.
In other words, each curve is relative to its own local minimum. Our method consistently
performed better and the difference is even more striking for more challenging setups.

We also compared convergence plots of different solvers for the Z-step: ISTA, FISTA,
and L-BFGS-B. The rationale for choosing a quasi-Newton solver for the Z-step becomes
clear in Figure 5.3 as the L-BFGS-B solver turns out to be computationally advantageous
on a variety of setups.
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(c) K = 10, L = 32.

Figure 5.3 – Comparison of optimization solver in the Z-step. The y-axis shows the
objective function relative to the obtained minimum for each run: (f(x)− f(x∗))/f(x∗).
Each curve is the geometrical mean over 24 different random initializations.

Results on spike recordings In this experiment, we considered empirical neural
recordings from two different datasets. We first applied CSC on an LFP dataset
previously used in (Hitziger et al., 2017) and containing epileptiform spikes as shown
in Figure 5.4a. The data was recorded in the rat cortex, and is free of artifact. We
segmented the data into N = 300 trials of length T = 2500 samples, windowed each
trial with a tapered cosine function, and detrended the data with a high-pass filter at
1Hz in order to remove drifts in the signal. We set λ = 6, L = 350, and K = 3. Atoms
were initialized with Gaussian white noise.

The recovered atoms by our algorithm are shown in Figure 5.4b. We can observe that
the estimated atoms resemble the spikes in Figure 5.4a. These results show that, without
using any heuristics, our approach can recover similar atoms to the ones reported in
(Hitziger et al., 2017), even though it does not make any assumptions on the shapes
of the waveforms, or initializes the atoms with template spikes in order to ease the
optimization.

Results on LFP recording with phase-amplitude coupling The second dataset
is an LFP channel in a rodent striatum from (Dallérac et al., 2017). We segmented the
data into N = 70 trials of length T = 2500 samples, windowed each trial with a tapered
cosine function, and detrended the data with a high-pass filter at 1Hz. We set λ = 10,
L = 150, and K = 3. Atoms were initialized with Gaussian white noise.
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(a) LFP spike data from (Hitziger et al., 2017)
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(b) Estimated atoms

Figure 5.4 – Atoms learnt by αCSC on LFP data containing epileptiform spikes with
α = 2.
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Figure 5.5 – (a) Three atoms learnt from a rodent striatal LFP channel, using CSC.
The atoms capture the cross-frequency coupling of the data (dashed rectangles). (b) Co-
modulogram presents the cross-frequency coupling intensity computed between pairs of
frequency bands on the entire cleaned signal, following (Tort et al., 2010).

As opposed to the first LFP dataset, this dataset contains strong artifacts. Since CSC
is not robust to these artifacts, we first manually identified and removed the corrupted
trials. We also developed an alternative model which is robust to these artifacts, as
presented in Section 5.2.

In Figure 5.5a, we illustrate the estimated atoms with CSC on the manually-cleaned
data. We observe that the estimated atoms correspond to canonical waveforms found in
the signal. In particular, the high frequency oscillations around 80Hz are modulated in
amplitude by the low-frequency oscillation around 3Hz, a phenomenon known as cross-
frequency coupling (CFC). We can observe this CFC by computing a comodulogram on
the entire signal (Figure 5.5b), which measures the correlation between the amplitude
of the high frequency band and the phase of the low frequency band. CFC is described
in details in Chapter 3.

5.2 CSC with alpha-stable distributions

In previous section, we advocate that CSC methods have a strong potential for modeling
neural signals. However, they might also be limited as they consider an `2 reconstruction
error, which corresponds to assuming an additive Gaussian noise distribution. While
this assumption could be reasonable for several signal processing tasks, it turns out to
be very restrictive for neural signals, which often contain heavy noise bursts and have
low signal-to-noise ratio.

In this section, we aim to address the aforementioned concerns and propose a novel
probabilistic CSC model called αCSC, which is better-suited for neural signals. αCSC
is based on a family of heavy-tailed distributions called α-stable distributions (Samorod-
nitsky and Taqqu, 1994) whose rich structure covers a broad range of noise distributions.
The heavy-tailed nature of the α-stable distributions renders our model robust to im-
pulsive observations. We develop a Monte Carlo expectation maximization (MCEM)
algorithm for inference, with a weighted CSC model for the maximization step. We
propose efficient optimization strategies, and we illustrate the benefits of the proposed
approach on both synthetic and real datasets.

The symbols U , E , N , S denote the univariate uniform, exponential, Gaussian, and
α-stable distributions, respectively.
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Figure 5.6 – PDFs of α-stable distributions. The distributions are more heavy-tailed
than the Gaussian distribution (special case α = 2 and β = 0).

5.2.1 Alpha-stable distributions

The α-stable distributions have become increasingly popular in modeling signals that
might incur large variations (Kuruoglu, 1999, Mandelbrot, 2013, Şimşekli et al., 2015,
Wang et al., 2016, Leglaive et al., 2017) and have a particular importance in statistics
since they appear as the limiting distributions in the generalized central limit theorem
(Samorodnitsky and Taqqu, 1994). They are characterized by four parameters:

1. α ∈ (0, 2] is the characteristic exponent and determines the tail thickness of the
distribution: the distribution will be heavier-tailed as α gets smaller.

2. β ∈ [−1, 1] is the skewness parameter. If β = 0, the distribution is symmetric.
3. σ ∈ (0,∞) is the scale parameter and measures the spread of the random variable

around its mode (similar to the standard deviation of a Gaussian distribution).
4. µ ∈ (−∞,∞) is the location parameter (for α > 1, it is simply the mean).

The probability density function of an α-stable distribution cannot be written in closed-
form except for certain special cases. However, the characteristic function can be written
as follows:

x ∼ S(α, β, σ, µ) ⇐⇒ (5.15)
E[exp(jωx)] = exp(−|σω|α(1 + jsign(ω)βψα(ω)) + jµω) ,

where ψα(ω) = log |ω| for α = 1, ψα(ω) = tan(πα/2) for α 6= 1, and j2 = −1. As an
important special case of the α-stable distributions, we obtain the Gaussian distribution
when α = 2 and β = 0, i.e. S(2, 0, σ, µ) = N (µ, 2σ2). In Figure 5.6, we illustrate
the (approximately computed) probability density functions (PDF) of the α-stable
distribution for different values of α and β. The distribution becomes heavier-tailed as
we decrease α, whereas the tails vanish quickly when α = 2.

The moments of the α-stable distributions can only be defined up to the order α,
i.e. E[|x|p] <∞ if and only if p < α, which implies the distribution has infinite variance
when α < 2. Furthermore, despite the fact that the PDFs of α-stable distributions do
not admit an analytical form, it is straightforward to draw random samples from them
(Chambers et al., 1976).
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Figure 5.7 – Illustration of a striatal LFP channel, which contains severe artifacts.

5.2.2 Alpha-stable CSC

From a probabilistic perspective, the CSC problem can be also formulated as a maximum
a-posteriori (MAP) estimation problem on the following probabilistic generative model:

znk [t] ∼ E(λ), xn[t]|z, d ∼ N (x̂n[t], 1), where x̂n ,
K∑
k=1

znk ∗ dk . (5.16)

It is easy to verify that the MAP estimate for this probabilistic model, which reads
argmaxd,z log p(d, z|x), is identical to the original optimization problem defined in (5.2).
Note that the positivity constraint on the activations is equivalent to an exponential
prior for the regularization term rather than the more common Laplacian prior.

It has been long known that, due to their light-tailed nature, Gaussian models often fail
at handling noisy high amplitude observations or outliers (Huber, 1981). As a result,
the “vanilla” CSC model turns out to be highly sensitive to outliers and impulsive noise
that frequently occur in electrophysiological recordings, as illustrated in Figure 5.7.
Possible origins of such artifacts are movement, muscle contractions, ocular blinks or
electrode contact losses.

In this study, we aim at developing a probabilistic CSC model that would be cap-
able of modeling challenging electrophysiological signals. We propose an extension of
the original CSC model defined in (5.16) by replacing the light-tailed Gaussian likeli-
hood (corresponding to the `2 reconstruction loss in (5.2)) with heavy-tailed α-stable
distributions. We define the proposed probabilistic model (αCSC) as follows:

znk [t] ∼ E(λ), xn[t]|z, d ∼ S(α, 0, 1/
√

2, x̂n[t]) . (5.17)

While still being able to capture the temporal structure of the observed signals via
convolution, the proposed model has a richer structure and would allow large variations
and outliers, thanks to the heavy-tailed α-stable distributions. Note that the vanilla
CSC defined in (5.16) appears as a special case of αCSC, as the α-stable distribution
coincides with the Gaussian distribution when α = 2.
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5.2.3 Model estimation: maximum a posteriori (MAP) inference

Given the observed signals x, we are interested in the maximum a posteriori (MAP)
estimate, defined as follows:

argmax
d,z

N∑
n=1

T∑
t=1

log p(xn[t]|d, z) +
K∑
k=1

log p(znk [t])

 . (5.18)

As opposed to the Gaussian case, unfortunately, this optimization problem is not
amenable to classical optimization tools, since the PDF of the α-stable distributions
does not admit an analytical expression. As a remedy, we use the product property of the
symmetric α-stable densities (Samorodnitsky and Taqqu, 1994, Godsill and Kuruoglu,
1999) and re-express the αCSC model as conditionally Gaussian. It leads to:

znk [t] ∼ E(λ), φn[t] ∼ S
(
α

2 , 1, 2(cos πα4 )2/α, 0
)
, xn[t]|z, d, φ ∼ N

(
x̂n[t], 1

2φ
n[t]
)

,

(5.19)

where φ is called the impulse variable that is drawn from a positive α-stable distribution
(i.e. β = 1), whose PDF is illustrated in Figure 5.6. It can be shown that both
formulations of the αCSC model are identical by marginalizing the joint distribution
p(x, d, z, φ) over φ (Samorodnitsky and Taqqu, 1994, Proposition 1.3.1).

The impulsive structure of the αCSC model becomes more prominent in this formulation.
The variances of the Gaussian observations are modulated by stable random variables
with infinite variance, where the impulsiveness depends on the value of α. It is also
worth noting that when α = 2, φn[t] becomes deterministic and we can again verify that
αCSC coincides with the vanilla CSC.

The conditionally Gaussian structure of the augmented model has a crucial practical
implication: if the impulse variable φ were to be known, then the MAP estimation
problem over d and z in this model would turn into a weighted CSC problem, which is
a much easier task compared to the original problem. In order to be able to exploit this
property, we propose an expectation-maximization (EM) algorithm, which iteratively
maximizes a lower bound of the log-posterior log p(d, z|x), and algorithmically boils
down to computing the following steps in an iterative manner:

E-Step: B(i)(d, z) = E
[
log p(x, φ, z|d)

]
p(φ|x,z(i),d(i))

, (5.20)

M-Step: (d(i+1), z(i+1)) = argmaxd,z B(i)(d, z). (5.21)

where E[f(x)]q(x) denotes the expectation of a function f under the distribution q, i
denotes the iterations, and B(i) is a lower bound to log p(d, z|x) which is tight at the
current iterates z(i), d(i).

5.2.4 Model estimation: E-Step

In the expectation step of our algorithm, we need to compute the EM lower bound B
that has the following form:

B(i)(d, z) =+ −
N∑
n=1

(
‖
√
wn(i) � (xn −

K∑
k=1

znk ∗ dk)‖22 + λ
K∑
k=1
‖znk ‖1

)
, (5.22)
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Algorithm 5.3: α-stable Convolutional Sparse Coding
Input : Regularization λ ∈+, K initial atoms dk of length L,

Number of iterations I, J , M .
for i = 1 to I do

/* E-step: */
for j = 1 to J do

Draw φn[t](i,j) via MCMC (5.25)
Compute w(i) with (5.24)

/* M-step: weighted CSC */
for m = 1 to M do

z(i) = L-BFGS-B as in Algorithm 5.1 but with (5.27)
d(i) = L-BFGS-B on the dual problem as in Algorithm 5.2 but with (5.10)

return w(I), d(I), z(I)

where =+ denotes equality up to additive constants, � denotes the Hadamard (element-
wise) product, and the square-root operator is also defined element-wise. Here, wn(i) ∈
RT+ are the weights that are defined as follows:

wn[t](i) , E
[
1/φn[t]

]
p(φ|x,z(i),d(i))

. (5.23)

As the variables φn[t] are expected to be large when x̂n[t] cannot explain the observation
xn[t] – typically due to a corruption or a high noise – the weights will accordingly
suppress the importance of the particular point xn[t]. Therefore, the overall approach
will be more robust to corrupted data than the Gaussian models where all weights
would be deterministic and equal to 0.5.

Unfortunately, the weights w(i) cannot be computed analytically, therefore we need to
resort to approximate methods. In this study, we develop a Markov chain Monte Carlo
(MCMC) method to approximately compute the weights, where we approximate the
intractable expectations with a finite sample average, given as follows:

wn[t](i) ≈ 1
J

J∑
j=1

1
φn[t](i,j)

, (5.24)

where φn[t](i,j) are some samples that are ideally drawn from the posterior distribution
p(φ|x, z(i), d(i)). Directly drawing samples from the posterior distribution of φ is not
tractable either, and therefore, we develop a Metropolis-Hastings algorithm (Chib and
Greenberg, 1995), that asymptotically generates samples from the target distribution
p(φ|·) in two steps. In the j-th iteration of this algorithm, we first draw a random
sample for each n and t from the prior distribution (c.f. (5.19)), i.e. φn[t]′ ∼ p(φn[t]).
We then compute an acceptance probability for each φn[t]′ that is defined as follows:

acc(φn[t](i,j) → φn[t]′) , min

1, p(xn[t]|d(i), z(i), φ′n[t])
p(xn[t]|d(i), z(i), φn[t](i,j))

 , (5.25)

where j denotes the iteration number of the MCMC algorithm.

Finally, we draw a uniform random number un[t] ∼ U([0, 1]) for each n and t. If un[t] <
acc(φn[t](i,j) → φn[t]′), we accept the sample and set φn[t](i+1) = φn[t]′; otherwise we
reject the sample and set φn[t](i+1) = φn[t](i). This procedure forms a Markov chain that
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leaves the target distribution p(φ|·) invariant, where under mild ergodicity conditions,
it can be shown that the finite-sample averages converge to their true values when J
goes to infinity (Liu, 2008).

5.2.5 Model estimation: M-Step

Given the weights wn that are estimated during the E-step, the objective of the M-step
is to solve a weighted CSC problem, which is much easier compared to our original
problem. The problem reads:

argmin
{dk},{zn

k
}

N∑
n=1

1
2

∥∥∥∥∥∥√wn � (xn −
K∑
k=1

znk ∗ dk)

∥∥∥∥∥∥
2

2

+ λ
K∑
k=1
‖znk ‖1 ,

s.t. ‖dk‖22 ≤ 1, and znk ≥ 0, ∀k, n.

(5.26)

Here, similarly to the vanilla CSC approach described in Section 5.1, we develop a
block coordinate descent strategy, where we solve the problem for either {dk} or {znk },
by keeping the other block of variable fixed. Note that in the weighted case, it is
not clear how to solve this problem in the Fourier domain. We thus perform all the
computations in the time domain, using the L-BFGS solvers described in Subsection 5.1.2
and Subsection 5.1.3.

For the Z-step, we just need to update the gradient is updated into:

∇zk
= d���k ∗

w �
x− K∑

l=1
zl ∗ dl


+ λ

K∑
l=1

zl . (5.27)

Thus, the weighted Z-step only adds a component-wise product over NT time points,
compared to the vanilla CSC Z-step.

For the D-step, we need to update the primal optimal computation into:

d∗(β) =

 N∑
n=1

(wn � Zn>)Zn + β̄

−1
N∑
n=1

(wn � Zn>)xn (5.28)

Unfortunately, this linear system does not have a Toeplitz structure as in the non-
weighted case. Therefore, building and solving the system is slightly more expensive.
Using the BCD strategy, building the system has a complexity of O(NKTL2) instead
of O(NKTL), and each gradient step costs O(KL3) instead of O(KL2).

Our entire EM approach can be summarized in the Algorithm 5.3. Note that during
the alternating minimization, thanks to convexity we can warm start the d update and
the z update using the solution from the previous update. This significantly speeds up
the convergence of the L-BFGS-B algorithm, particularly in the later iterations of the
overall algorithm.

5.2.6 Model initialization

As for standard CSC, αCSC models are non-convex, and the initialization is therefore
a decisive step of the optimization. We initialize the atoms and activations in the say
fashion than for standard CSC, as described in Subsection 5.1.4.
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Figure 5.8 – The initial weights estimated with an E-step. The subsequent M-step will
be less affected by the strong artifacts since they are down-weighted.

A good initialization of the weights wn[t] is also critical. If we initialize the weights
with a constant value, the `2-norm of the weighted CSC model puts more importance
in the large values of the signals, which are generally artifacts. Therefore, the obtained
atoms often corresponds to these artifacts, and αCSC models do not perform better
than CSC models.

To solve this issue, we can initialize the weights with the inverse of the standard
deviation of each trial. Therefore, initial weights are small in trials with large amplitude
artifacts, making the model robust to these artifacts. The subsequent iterations of
the EM algorithm refine the weights, atoms and activations, with respect to the α-
stable distribution, but the initial setup largely determine the final optimum, and the
robustness to artifacts.

Actually, a better way to tackle this issue is to start with a weights estimation, using
only zeros in the initial estimate of the reconstructed signals, x̂n[t] = 0 for all n and t.
It simply corresponds to doing an E-step first, instead of an M-step. The initial weights
then corresponds roughly to wn[t] ≈ max(1/xn[t], g(α)), where g(α) only depends on
the parameter α of the distribution. This threshold effect is due to the positive α-stable
distribution of φn[t] ∼ S

(
α
2 , 1, 2(cos πα4 )2/α, 0

)
, as shown in Figure 5.6 (with β = 1).

An example of such weights initialization is presented in Figure 5.8.

5.2.7 Experiments

To demonstrate the robustness of αCSC models, we performed the same experiment as
in Subsection 5.1.5, using an LFP channel in a rodent striatum from (Dallérac et al.,
2017). We initialized the weights wn to the inverse of the variance of the trial xn, and
the atoms with Gaussian white noise.

We compared the atoms of three different setups:

1. A CSC model applied on clean data, i.e. where we removed manually the artifacts,
2. A CSC model applied on the full data,
3. An αCSC model applied on the full data, using α = 1.2.

We illustrate the estimated atoms in Figure 5.9. Even though CSC is able to provide
excellent results on the clean dataset, its performance heavily relies on the manual
removal of the artifacts. It can be observed that in the presence of strong artifacts, CSC
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Figure 5.9 – Three atoms learnt respectively by: CSC (clean data), CSC (full data),
αCSC (full data). The atoms contains cross-frequency coupling (dashed rectangle). The
CSC model is not able to obtain these atoms since it is too much affected by large
amplitude artifacts. On the other hand, the αCSC model is robust to these artifacts.

is not able to recover the atoms anymore. On the contrary, we see that αCSC can still
recover atoms as observed in the artifact-free regime. In particular, the cross-frequency
coupling phenomenon is still clearly visible.

5.3 Multivariate CSC with a rank-1 constraint

The CSC approach was essentially developed for univariate signals. Interestingly, images
can be multivariate such as color or hyper-spectral images, yet most CSC methods
only consider gray scale images. To the best of our knowledge, the only reference to
multivariate CSC is Wohlberg (2016a), where the author proposes two models well
suited for 3-channel images.

In the case of EEG and MEG recordings, neural activity is instantaneously and linearly
spread across channels, due to Maxwell’s equations (Hari and Puce, 2017). The same
temporal patterns are reproduced on all channels with different intensities, which
depend on each activity’s location in the brain. To exploit this property, we propose to
use a rank-1 constraint on each multivariate atom. This idea has been mentioned in
(Barthélemy et al., 2012, 2013), but was considered less flexible than the full-rank model.
Moreover, their proposed optimization techniques are not specific to shift-invariant
models, and not scalable to long signals.

5.3.1 Model definitions

Univariate CSC Let’s recall the univariate CSC model as defined in (5.2):

argmin
{dk},{zn

k
}

N∑
n=1

1
2

∥∥∥∥∥∥xn −
K∑
k=1

znk ∗ dk

∥∥∥∥∥∥
2

2

+ λ
K∑
k=1
‖znk ‖1 ,

s.t. ‖dk‖22 ≤ 1 and znk ≥ 0, ∀k, n,

(5.29)

where {xn}Nn=1 ⊂ RT are N observed signals of length T , λ > 0 is the regularization
parameter, {dk}Kk=1 ⊂ RL are the K temporal atoms of length L we aim to learn, and
{znk }Kk=1 ⊂ RT−L+1 are K signals of activations a.k.a. the code associated with xn. We
note T̃ = T − L+ 1.
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Multivariate CSC The multivariate formulation uses an additional dimension on
the signals and on the atoms, since the signal is recorded over P channels (mapping to
space locations):

argmin
{Dk},{zn

k
}

N∑
n=1

1
2

∥∥∥∥∥∥Xn −
K∑
k=1

znk ∗Dk

∥∥∥∥∥∥
2

2

+ λ
K∑
k=1
‖znk ‖1,

s.t. ‖Dk‖22 ≤ 1 and znk ≥ 0 ∀k, n,

(5.30)

where {Xn}Nn=1 ⊂ RP×T are N observed multivariate signals, {Dk}Kk=1 ⊂ RP×L are the
spatio-temporal atoms, and {znk }Kk=1 ⊂ RT̃ are the sparse activations associated with
Xn.

Multivariate CSC with rank-1 constraint This model is similar to the multivari-
ate case but it adds a rank-1 constraint on the dictionary, Dk = ukv

>
k ∈ RP×L, with

uk ∈ RP being the pattern over channels and vk ∈ RL the pattern over time. The
optimization problem boils down to:

argmin
{uk},{vk},{zn

k
}

N∑
n=1

1
2

∥∥∥∥∥∥Xn −
K∑
k=1

znk ∗ (ukv>k )

∥∥∥∥∥∥
2

2

+ λ
K∑
k=1

∥∥∥znk ∥∥∥1
,

s.t. ‖uk‖22 ≤ 1 , ‖vk‖22 ≤ 1 and znk ≥ 0, ∀k, n.

(5.31)

The rank-1 constraint is consistent with Maxwell’s equations and the physical model
of electrophysiological signals like EEG or MEG, where each source is linearly spread
instantaneously over channels with a constant topographic map (Hari and Puce, 2017).
Using this assumption, one aims to improve the estimation of patterns under the presence
of independent noise over channels. Moreover, it can help separating overlapping sources
which are inherently rank-1 but whose sum is generally of higher rank. Finally, as
explained below, several computations can be factorized to speed up computational
time.

General estimation scheme Problems (5.29), (5.30) and (5.31) share the same
structure. They are convex in each variable but not jointly convex. The resolution
is done by using a block coordinate descent approach which minimizes alternatingly
the objective function over one block of the variables. In the following subsection, we
describe this approach on the multivariate with rank-1 constraint case (5.31), updating
iteratively the activations znk , the spatial patterns uk, and the temporal pattern vk.

5.3.2 Model estimation: Z-step

Given K fixed multivariate atoms Dk ∈ RP×L and a regularization parameter λ > 0,
we recall that the Z-step aims to retrieve the NK activation signals znk ∈ RT̃ associated
to the signals Xn ∈ RP×T by solving the following `1-regularized optimization problem:

argmin
{zn

k
}

N∑
n=1

1
2

∥∥∥∥∥∥Xn −
K∑
k=1

znk ∗Dk

∥∥∥∥∥∥
2

2

+ λ
K∑
k=1
‖znk ‖1 ,

s.t. znk ≥ 0, ∀k, n.

(5.32)
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Algorithm 5.4: Locally greedy coordinate descent (LGCD)
Input : Signal x, atoms dk, number of segments M , stopping parameter ε > 0, zk

initialization
Initialize βk[t] with (5.33).
repeat

for m = 1 to M do

Compute z′k[t] = max
(
βk[t]−λ
‖Dk‖2

2
, 0
)

for (k, t) ∈ Cm
Choose (k0, t0) = argmax

(k,t)∈Cm

|zk[t]− z′k[t]|

Update β with (5.34)
Update the current point estimate zk0 [t0]← z′k0

[t0]
until ‖z − z′‖∞ < ε;

This problem can be solved with techniques such as FISTA, ADMM, L-BFGS, or GCD,
as described in Subsection 5.1.2. For long signals, these techniques can be quite slow
due to the computation of the gradient (FISTA, ADMM, L-BFGS) or the choice of the
best coordinate to update in GCD, which are operations that scale linearly in T . A
way to alleviate this limitation is to use a locally greedy coordinate descent (LGCD)
strategy, presented recently in Moreau et al. (2018).

Coordinate descent (CD) The key idea of coordinate descent is to update our
estimate of the solution one coordinate zk[t] at a time. For (5.32), it is possible to
compute the optimal value z′k[t] of one coordinate zk[t] given that all the others are
fixed. Indeed, the problem restricted to one coordinate has a closed-form solution given
by:

z′k[t] = max
(
βk[t]− λ
‖Dk‖22

, 0
)
, with βk[t] =

D���k ∗̃
x− K∑

l=1
zl ∗Dl + zk[t]et ∗Dk


 [t]

(5.33)
where et ∈ RT̃ is the canonical basis vector with value 1 at index t and 0 elsewhere. A
proof of this closed-form solution is given in Appendix A.1.1.

When updating the coefficient zk0 [t0] to the value z′k0
[t0], β is updated with:

β
(q+1)
k [t] = β

(q)
k [t] + (D���k0 ∗̃ Dk)[t− t0](zk0 [t0]− z′k0 [t0]), ∀(k, t) 6= (k0, t0) . (5.34)

The term (D���k0
∗̃ Dk)[t− t0] is zero for |t− t0| ≥ L. Thus, only K(2L− 1) coefficients

of β need to be changed (Kavukcuoglu et al., 2010). A proof of this update is given
in Appendix A.1.2. The CD algorithm updates at each iteration a coordinate to this
optimal value. The coordinate to update can be chosen with different strategies:

• The cyclic CD (Friedman et al., 2007), which iterates over all coordinates.
• The randomized CD (Nesterov, 2010, Richtárik and Takáč, 2014), which chooses

a coordinate at random for each iteration.
• The greedy CD (Osher and Li, 2009), which chooses the coordinate the farthest

from its optimal value.
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Locally greedy coordinate descent (LGCD) The choice of a coordinate selection
strategy results of a tradeoff between the computational cost of each iteration and the
improvement it provides. For cyclic and randomized strategies, the iteration complexity
is O(KL) as the coordinate selection has a constant complexity. The greedy selection
of a coordinate is more expensive as it is linear in the signal length O(KT̃ ). However,
greedy selection is more efficient iteration-wise (Nutini et al., 2015).

Moreau et al. (2018) proposed to consider a locally greedy selection strategy for CD.
The coordinate to update is chosen greedily in one of M subsegments of the signal,
i.e. at iteration q, the selected coordinate is:

(k0, t0) = argmax
(k,t)∈Cm

|zk[t]− z′k[t]| , m ≡ q (mod M) + 1 , (5.35)

with Cm = J1,KK× J(m− 1)T̃ /M,mT̃/MK. With this strategy, the coordinate selection
complexity is linear in the length of the considered subsegment O(KT̃/M). By choosing
M = bT̃ /(2L− 1)c, the complexity of update is the same as the complexity of random
and cyclic coordinate selection, O(KL). We detail the steps of LGCD in Algorithm 5.4.

Using the LGCD algorithm is not faster than L-BFGS in the general case, since it is fast
only when few coefficients need to be updated. However, this algorithm is particularly
efficient when the zk are sparse. Indeed, in this case, only few coefficients need to be
updated in the signal, resulting in a low number of iterations to reach convergence.
Therefore, LGCD is particularly efficient when the regularization parameter λ is large.
The difference with L-BFGS can be decisive for long time series, as shown in the
experiments Subsection 5.3.5. Computational complexities are detailed in Table 5.2.

Precomputation To speed up the LGCD iterations during the Z-step, we can
precompute D���k ∗̃ Dl ∈ R2L−1. We have:

(D���k ∗̃ Dl)[t] =
P∑
p=1

L∑
τ=1

Dk,p[τ ]Dl,p[t+ τ − 1], ∀t ∈ J1, 2L− 1K. (5.36)

In the case of the rank-1 constraint model, we can factorize the computation with:

(D���k ∗̃ Dl)[t] =

 P∑
p=1

uk,pul,p

 L∑
τ=1

vk[τ ]vl[t+ τ − 1], ∀t ∈ J1, 2L− 1K. (5.37)

The computational complexities are respectively O
(
K2L2P

)
and O

(
K2L(L+ P )

)
.

5.3.3 Model estimation: D-step

Given KN fixed activation signals znk ∈ RT̃ , associated to signals xn ∈ RT , the D-step
aims to update the K temporal patterns dk ∈ RL, by solving:

argmin
{uk},{vk}

E = argmin
{uk},{vk}

N∑
n=1

1
2

∥∥∥∥∥∥Xn −
K∑
k=1

znk ∗ (ukv>k )

∥∥∥∥∥∥
2

2
s.t. ‖uk‖22 ≤ 1 and ‖vk‖22 ≤ 1, ∀k.

(5.38)

In Subsection 5.1.3, we solve the univariate problem with L-BFGS in the dual problem.
But here the D-step problem is not convex, so we must resort to a block coordinate
descent, first updating {uk} while keeping {vk}, and then updating {vk} while keeping
{uk} fixed. We use in both cases a projected gradient descent (PGD) algorithm.



122 CHAPTER 5. CONVOLUTIONAL SPARSE CODING

Algorithm 5.5: Projected gradient descent for updating {uk} and {vk}.
Input : Signals Xn, activations znk , stopping parameter ε > 0,

initial estimate {uk} and {vk}
Initialize Φk with (5.41) and Ψk with (5.42) .
repeat

Compute with (5.43) for k ∈ J1,KK, Gk = ∇uk
E,

Update the estimate with {u(q+1)
k } ← to Armijo({u(q)

k }, Gk, E)

until
∑K
k=1

∥∥∥∥u(q+1)
k − u(q)

k

∥∥∥∥
1
< ε;

Set {uk} ← {u
(q)
k }

repeat
Compute with (5.44) for k ∈ J1,KK, Gk = ∇vk

E,

Update the estimate with {v(q+1)
k } ← to Armijo({v(q)

k }, Gk, E)

until
∑K
k=1

∥∥∥∥v(q+1)
k − v(q)

k

∥∥∥∥
1
< ε;

Set {vk} ← {v
(q)
k }

return {uk}k and {vk}k

Projected gradient descent (PGD) PGD is an algorithm which alternates between
a gradient descent step and a projection on the constraint set. In the case of (5.38), the
projection on the unit ball is a simple scaling operation:

proj(uk) = uk
max(‖uk‖2, 1) (5.39)

The projection is identical for vk. To compute the gradients ∇uk
E and ∇vk

E of (5.38)
relative to uk and vk, we first compute the gradient ∇Dk

E relative to the multivariate
atom Dk = ukv

>
k ∈ RP×L. We also introduce some constants Φk and Ψk,l, which are

constant during the entire D-step:

∇Dk
E =

N∑
n=1

(znk )��� ∗

xn − K∑
l=1

znl ∗Dl

 = Φk −
K∑
l=1

Ψk,l ∗Dl (5.40)

where Φk ∈ RL and Ψk,l ∈ R2L−1 are computed with:

Φk[t] =
N∑
n=1

T̃∑
τ=1

znk [τ ]xn[t+ τ − 1], ∀t ∈ J1, LK, (5.41)

Ψk,l[t] =
N∑
n=1

T̃∑
τ=1

znk [τ ]znl [t+ τ − 1], ∀t ∈ J1, 2L− 1K. (5.42)

Details of this calculation are available in Appendix A.1.3. Note that in the last
equation (5.42), the sum only concerns the defined terms, i.e. the time points τ such
that (t+ τ − 1) ∈ J1, T̃ K.

Then, the gradients relative to uk and vk are obtained using the chain rule:

∇uk
E = (∇Dk

E)vk ∈ RP , (5.43)
∇vk

E = u>k (∇Dk
E) ∈ RL , (5.44)
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Algorithm 5.6: Power-iteration is used to find the maximum eigenvalue of a
linear operator.
Input : Linear operator A, initial vector u, tolerance parameter ε
repeat

u← Au/‖Au‖
λ′ ← λ
λ← u>Au

until (λ− λ′)/λ′ < ε;
return eigenvalue λ and eigenvector u

Algorithm 5.5 details the different step used in our algorithm to update {uk} and
{vk}. Note that E can also be computed efficiently, up to a constant term C, with the
following:

E =
K∑
k=1

u>k (∇Dk
E)vk + C . (5.45)

Step-size strategy To find a good step size during the gradient descent, we can
estimate the Lipschitz constant L of each sub-problem. To do so, we use a power-iteration
(Trefethen and Bau III, 1997) scheme on the linear operators A and B, where:

(Au)k =

 K∑
l=1

Ψk,l ∗Dl

 vk, and (Bv)k = u>k

 K∑
l=1

Ψk,l ∗Dl

 . (5.46)

Power-iteration consists in applying a linear operator multiple times to a random initial
vector, using normalizations step to stay in reasonable numerical scales. Considering
the eigenvector decomposition of the random initial vector, each eigenvector is scaled by
λNi , where λi is the associated eigenvalue, and N is the number of times the operator is
applied. As the result is scaled to be unit norm, each eigenvector component goes to
zero, except the one associated with the largest eigenvalue. The algorithm is detailed
in Algorithm 5.6. After estimating the Lipschitz constant L, we can use the optimal
step-size 1/L in the PGD to solve the D-step.

Note that both Lipschitz constants Lu and Lv have to be updated after each Z-step.
The power iteration can be warm-started by storing the eigenvectors u and v associated
with the largest eigenvalues, and using it as the initial vectors in the subsequent power
iteration procedures.

Table 5.2 – Computational complexities of each step.

Step Method Computation Computed Complexity

Z-step LGCD β initialization once NKTL
Z-step LGCD Precomputation once K2L2

Z-step LGCD M coordinate updates multiple times MKL

D-step PGD Φ precomputation once NKTL
D-step PGD Ψ precomputation once NK2TL
D-step PGD Gradient evaluation multiple times K2L2

D-step PGD Function evaluation multiple times K2L2
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Figure 5.10 – Comparison of state-of-the-art univariate methods. (a) Convergence
plot with the objective function relative to the obtained minimum, as a function of
computational time. (b) Time taken to reach a relative precision of 10−3, for different
regularization parameters λ.

An alternative method is to use the Armijo backtracking line-search (Wright and
Nocedal, 1999), which dynamically adapts the step-size at each PGD iteration. To do
so, the Armijo line-search needs to evaluate the function E(u, v) multiple times, but
this evaluation is computationally cheap when using precomputed constants Φk and
Ψk,l, and (5.45). In our experiments, this strategy was computationally more efficient
than estimating the Lipschitz constants.

5.3.4 Model initialization

We already discussed the need of a good initialization in Subsection 5.1.4. In particular,
we saw that random atoms poorly correlate with the signal, making the initial value
of λmax very low compared to the following ones. This phenomenon is even stronger
on multivariate atoms, where we witnessed initial λmax as low as 1/20 of the following
ones, when using Gaussian white noise atoms.

Once again, to fix this problem, we propose to initialize the dictionary with random
chunks of the signal. To deal with the rank-1 constraint of the multivariate atoms,
we project each multivariate chunk on a rank-1 approximation using singular value
decomposition (SVD), and keeping only the largest eigenvalue.

5.3.5 Experiments

Speed performance on univariate CSC To illustrate the performance of our
optimization strategy, we monitored its convergence speed on a MEG dataset, the
somatosensory dataset from the MNE software (Gramfort et al., 2013, 2014), which
contains responses to median nerve stimulation. We considered only the gradiometers
channels, which measure the gradient of the magnetic field, and we used the following
parameters: T = 134 700, N = 2, K = 8, and L = 128.

First we compared our PGD and LGCD solvers against three state-of-the-art univariate
CSC solvers. The first was developed by Garcia-Cardona and Wohlberg (2017) and is
based on ADMM, while the second and third were our methods described in Section 5.1,
using L-BFGS in the dual for the D-step, and respectively FISTA and L-BFGS for the
Z-step. All solvers shared the same objective function, but as the problem is non-convex,
the solvers are not guaranteed to reach the same local minima, even though we started
from the same initial settings. Hence, for a fair comparison, we computed the convergence
curves relative to each local minimum, and averaged them over 10 different initializations.
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Figure 5.11 – Comparison of state-of-the-art univariate methods. (Top) With shorter
(L = 16 instead of L = 128) atoms. (Bottom) With shorter signals (T = 13 470 instead
of T = 134 700).

The results, presented in Figure 5.10(a, b), demonstrate the competitiveness of our
method, for reasonable choices of λ. Indeed, a higher regularization parameter leads to
sparser activations znk , on which the LGCD algorithm is particularly efficient.

We also tried shorter atoms of length L = 16 instead of L = 128, and independently
shorter signals of length T = 13 470 instead of T = 134 700. Results are presented in
Figure 5.11. They confirm the competitiveness of our method, especially when using
large regularization parameters. As the maximum possible regularization λmax was
around 90, we question the practical use of low regularization values, which would
poorly enforce the sparsity constraint.

Speed performance on multivariate CSC Then, we also compared our method
against a multivariate ADMM solver developed by Wohlberg (2016a). As this solver
was quite slow on these long signals, we limited our experiments to P = 5 channels. The
results, presented in Figure 5.12 and Figure 5.13, show that our method is faster than
the competing method for large λ. The difference is even more prominent on larger
number of channels.

Scaling with the number of channels The multivariate model involves an extra
dimension P but its impact on the computational complexity of our solver is limited.
Figure 5.14 shows the average running times of the Z-step and the D-step. Timings
are normalized with respect to the timings for a single channel. The running times are
computed using the same signals from the somatosensory dataset, with the following
parameters: T = 26 940, N = 10, K = 2, L = 128. We can see that the scaling of these
three operations is sub-linear in P . For the Z-step, only the initial computations for the
first βk and the constants D���k ∗̃ Dl depend linearly on P so that the complexity increase
is limited compared to the complexity of solving the optimization problem (5.32). For
the D-step, the computation of the gradients is linear with P , but the most expensive
operations here are the computation of the constant Ψk, which does not depend on P .
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Finding patterns in low SNR signals Since the multivariate model has access to
more data, we would expect it to perform better compared to the univariate model
especially for low SNR signals. To demonstrate this, we compared the two models when
varying the number of channels P and the SNR of the data. The original dictionary
contained two patterns, a square and a triangle, presented in Figure 5.15. The signals
were obtained by convolving the atoms with activation signals znk , where the activation
locations were sampled uniformly in J1, T̃ K× J1,KK with 5% non-zero activations, and
the amplitudes were uniformly sampled in [0, 1]. Then, a Gaussian white noise with
variance σ was added to the signal. We fixed N = 100, L = 64 and T̃ = 640 for our
simulated signals. We can see in Figure 5.15a the temporal patterns recovered for
σ = 10−3 using only one channel and using 5 channels. While the patterns recovered
with one channel are very noisy, the multivariate model with rank-1 constraint recovers
the original atoms accurately. This can be expected as the univariate model is ill-defined
in this situation, where some atoms are superimposed. For the rank-1 model, as the
atoms have different spatial maps, the problem is easier. Indeed, the spatial maps are
different for each atom, their sum is not of rank-1. The constraint is thus helping to
separate the patterns as soon as there is more than one channel.

Then, we evaluated the learned temporal atoms. Due to permutation and sign ambiguity,
we computed the `2-norm of the difference between the temporal pattern v̂k and the
ground truths, vk or −vk, for all permutations S(K) i.e.

loss(v̂) = min
s∈S(K)

K∑
k=1

min
(
‖v̂s(k) − vk‖22, ‖v̂s(k) + vk‖22

)
. (5.47)

Multiple values of λ were tested and the best loss is reported in Figure 5.15b for varying
noise levels σ. We observe that independently of the noise level, the multivariate rank-1
model outperforms the univariate one. This is true even for good SNR, as using multiple
channels disambiguates the separation of overlapping patterns.

Examples of atoms in real MEG signals We also tested our algorithm on exper-
imental data, using the MNE "somatosensory" dataset (Gramfort et al., 2013, 2014).
We first extracted N = 103 trials from the data. Each trial lasts 6 s with a sampling
frequency of 150Hz (T = 900). We selected only gradiometer channels, leading to
P = 204 channels. The signals were notch-filtered to remove the power-line noise,
and high-pass filtered at 2Hz to remove the low-frequency trend. The purpose of the
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(b) Time to reach a precision of 10−3 (multivariate).

Figure 5.12 – Comparison of state-of-the-art multivariate methods, using P = 5 channels.
(a) Convergence plot with the objective function relative to the obtained minimum, as a
function of computational time. (b) Time taken to reach a relative precision of 10−3,
for different regularization parameters λ.
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Figure 5.13 – Comparison of state-of-the-art multivariate methods. (Top) With shorter
(L = 16 instead of L = 128) atoms. (Bottom) With shorter signals (T = 13 470 instead
of T = 134 700).

temporal filtering is to remove low frequency drift artifacts which contribute a lot to
the variance of the raw signals.

Figure 5.16a shows a recovered non-sinusoidal brain rhythm which resembles the well-
known mu-rhythm. The mu-rhythm has been implicated in motor-related activity
(Hari, 2006) and is centered around 9–11Hz. Indeed, while the power is concentrated
in the same frequency band as the alpha, it has a very different spatial topography
(Figure 5.16b). In Figure 5.16c, the power spectral density (PSD) shows two components
of the mu-rhythm – one at around 9Hz, and a harmonic at 18Hz as previously reported
in (Hari, 2006). Based on our analysis, it is clear that the 18Hz component is simply
a harmonic of the mu-rhythm even though a Fourier-based analysis could lead us to
falsely conclude that the data contained beta-rhythms.

Finally, due to the rank-1 nature of our atoms, it is straightforward to fit an equivalent
current dipole (Tuomisto et al., 1983) to interpret the origin of the signal. Figure 5.16d
shows that the atom does indeed localize in the primary somatosensory cortex, or the
so-called S1 region with a 59.3% goodness of fit. Intriguingly, we also found such atoms
in the secondary somatosensory region, also known as S2. One such atom is shown in
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Figure 5.14 – Timings of Z and D updates when varying the number of channels P .
The scaling is sublinear with P , due to the precomputation steps in the optimization.
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Figure 5.15 – (a) Temporal patterns recovered with P = 1 and P = 5. The signals
were generated with the two simulated temporal patterns and with σ = 10−3. (b)
Evolution of the recovery loss (lower is better) with σ for different values of P . Using
more channels improves the recovery of the original patterns.

Figure 5.17.

Sample dataset In addition to the MNE somatosensory dataset, we also analyzed
the MNE "sample" dataset (Gramfort et al., 2013, 2014). In this case, we used N = 1,
and the number of time points T = 41 584 corresponds to 278 s of recording sampled
at 150.15Hz. The magnetometer channels are selected so the number of channels is
P = 102. We learned K = 25 atoms. The sample data was lowpass filtered at 40Hz,
and highpass filtered at 1Hz. Results are presented in Figure 5.18.

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.3

0.2

0.1

0.0

0.1

0.2

(a) Temporal atom (b) Spatial pattern
0 5 10 15 20 25

Frequencies (Hz)

30

20

10

0

10

20

(c) PSD (dB) (d) Dipole fit

Figure 5.16 – Atoms revealed using the MNE somatosensory data. Note the non-
sinusoidal comb shape of the mu rhythm.
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Figure 5.17 – Atom in the S2 region revealed in the MNE somatosensory data. A. The
temporal waveform, and its corresponding B. Spatial pattern, C. The Power Spectral
Density (PSD), and D. the dipole fit in the S2 region.
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Figure 5.18 – A selection of A. temporal waveforms of the atoms learned on the MNE
sample dataset, and their corresponding B. activations, and C. spatial patterns

Figure 5.18A shows the temporal waveforms of these atoms and Figure 5.18C shows
the corresponding spatial pattern for a selection of the total atoms. As expected, we
are able to recover latent components corresponding to ocular (3rd row) and cardiac
artifacts (4th row). Indeed, the ocular artifacts displays the prototypical dipolar pattern
in the frontal channels. In Figure 5.18B, we also show the sparse activations associated
with the atoms.

More interestingly, we also recover an oscillatory waveform (first row) which appears to
originate due to a dipole below the parietal channels at around a frequency of 30Hz.
We confirm this in Figure 5.19 using a dipole fit. Indeed, the atom does originate in the
parietal lobe which suggests that what we observe is probably a motor rhythm. The
dataset under consideration did in fact contain a button press task which could explain
the presence of such an atom.
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Figure 5.19 – Dipole fit and power spectral density computed on MNE somato sample
dataset for the atom in first row in Figure Figure 5.18.



Conclusion

“It’s a magical world, Hobbes, ol’d buddy...
...let’s go exploring!”

– Bill Watterson

Neurophysiological time-series are extremely challenging from a signal processing per-
spective. They contain complex structures that need dedicated analyzing tools to be
properly described, and their poor signal-to-noise ratio requires the design of sophistic-
ated methods to aggregate the weak signal of interest over multiple time windows or
multiple channels. Yet in many situations, the standard approach is based on linear
filtering, ad-hoc correlation metrics, and surrogate methods for assessing significance.
Such pipelines are arbitrary, often slow and statistically weak, and cannot be accurately
compared except on over-simplistic simulations.

We advocate that a better approach consists in defining appropriate signal models. Such
models need to be rich enough to capture the structure of the signal of interest, and
simple enough to provide a robust and efficient estimation method. With a well-defined
loss function, estimating a model resorts to an optimization problem, which can be
solved using standard optimization algorithms. More importantly, if we can evaluate the
goodness of fit of a model on a validation set, we enable model selection through cross-
validation, leading to legitimate parameter selection and to reproducible data-driven
analyses.

As in many situations, we do not need to design such models from scratch. We can
stand on the shoulders of giants and reuse models developed in other contexts for
other applications. Following this idea, the main contribution of this work is based
on non-linear autoregressive models, which were developed in scientific communities
focusing on speech processing and on econometry. Yet these models required some
adjustments to properly fit to our cross-frequency coupling application.

These models describe the modulation of power-spectral density of a signal conditionally
to another. They are fast to estimate, statistically powerful, and easy to compare. The
model comparison is particularly powerful as discussed in details in this work. We
also proposed a number of more sophisticated extensions, from adding a simple delay
parameter, to estimating couplings on multivariate signals.

Using a similar modeling approach, we also explored another class of models, which focus
on the temporal morphology of neurophysiological time-series. While previous models
were based on spectral estimation, these models are based on temporal representations,
assuming that the signal is composed of a small number of prototypical waveforms.
Here again, we advocate that representing the model through a loss function makes the
problem properly-defined and naturally leads to standard optimization techniques.

The natural mathematical formulation of this problem, namely convolutional sparse
coding, was also inspired by existing work in another domain, image processing. To
tackle the unusual challenges of neurophysiological time-series, we adapted these models
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to heavy-tail noise distribution and multivariate signals. We showed that we obtain a rich
signal representation in a completely unsupervised way, avoiding a Fourier decomposition
that hides some relevant properties of the morphology of the neurophysiological signals..

Developing these models, we focused on building easily reusable tools and methods, to
foster their use in the community. Indeed, re-implementing recent technical methods is
a major pain point amongst researchers, especially in interdisciplinary research. As a
result, we strove to make the code of our research projects not only available online, but
also tested with continuous integration, extensively documented with examples, and
carefully designed to be as simple to use as possible (https://pactools.github.io/,
https://alphacsc.github.io/).

Our models offer novel and more robust possibilities to analyze neurophysiological
time-series, paving the way for new insights on how our brain functions via spectral
interactions or prototypical waveforms.

https://pactools.github.io/
https://alphacsc.github.io/
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A.1 Convolutional sparse coding

A.1.1 The optimal coordinate descent update

The following proposition gives the optimal update of on coordinate during coordinate
descent (CD) in the Z-step of the convolutional sparse coding (CSC) model described
in Chapter 5.

Proposition A.1. The optimal update z′k0
[t0] of the coefficient (k0, t0) is given by

z′k0 [t0] = 1
‖Dk0‖22

max
(
βk0 [t0]− λ, 0

)
,

with βk0 [t0] = D���k0
∗̃
(
X −

∑K
k=1 zk ∗Dk + zk0 [t0]et0 ∗Dk0

)
[t0] and where et0 is the

canonical vector in RT̃ with value 1 in t0 and value 0 elsewhere.

Proof. For y ∈ R+, we will denote ek0,t0(y) the cost difference between our current
solution estimate zk and the signal z(1)

k where the coefficient zk0 [t0] has been replaced
by y, i.e.

z
(1)
k [t] =

y, if (k, t) = (k0, t0)
zk[t], elsewhere

.

Let αk0 [t] = (X−
∑K
k=1 zk ∗Dk)[t]+Dk0 [t− t0]zk0 [t0] for all t ∈ J0, T −1K. This quantity

denotes the residual when zk0 [t0] is set to 0. It is important to note that it can be
re-written as,

αk[t] =

X − K∑
k=1

zk ∗Dk + zk0 [t0]et0 ∗Dk0

 [t]
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and thus, βk0 [t0] =
(
D���k0
∗̃ αk0

)
[t0]. The cost difference ek0,t0(y) is,

ek0,t0(y) = 1
2

T−1∑
t=0

X − K∑
k=1

zk ∗Dk

2

[t] + λ
K∑
k=1
‖zk‖1 −

1
2

T−1∑
t=0

X − K∑
k=1

z
(1)
k ∗Dk

2

[t] + λ
K∑
k=1
‖z(1)
k ‖1

= 1
2

T−1∑
t=0

(
αk0 [t]−Dk0 [t− t0]zk0 [t0]

)2
− 1

2

T−1∑
t=0

(
αk0 [t]−Dk0 [t− t0]y

)2
+ λ(|zk0 [t0]| − |y|)

= 1
2

T−1∑
t=0

Dk0 [t− t0]2(zk0 [t0]2 − y2)−
T−1∑
t=0

αk0 [t]Dk0 [t− t0](zk0 [t0]− y) + λ(|zk0 [t0]| − |y|)

= ‖Dk0‖22
2 (zk0 [t0]2 − y2)− (D���k0 ∗̃ αk0)[t0]︸ ︷︷ ︸

βk0 [t0]

(zk0 [t0]− y) + λ(|zk0 [t0]| − |y|)

Using this result, we can derive the optimal value z′k0
[t0] to update the coefficient (k0, t0)

as the solution of the following optimization problem:

z′k0 [t0] = arg max
y∈R+

ek0,t0(y) ∼ arg min
u∈R+

‖Dk0‖22
2

(
y − βk0 [t0]
‖Dk0‖22

)2

+ λy . (A.1)

Simple computations show the desired result, i.e.

z′k0 [t0] = 1
‖Dk0‖22

max(βk0 [t0]− λ, 0) .

A.1.2 The β update

After a coordinate update in CD during the Z-step of a CSC model, we need to update
the variables β, using the following proposition:

Proposition A.2. When updating the coefficient zk0 [t0] to the value z′k0
[t0], β is updated

with:

β
(q+1)
k [t] = β

(q)
k [t] + (D���k0 ∗̃ Dk)[t− t0](zk0 [t0]− z′k0 [t0]), ∀(k, t) 6= (k0, t0) . (A.2)

Proof. The value of βk0 [t0] is independent of the value of zk0 [t0]. Indeed, the term
zk0 [t0]et0 ∗Dk0 cancels the contribution of zk0 [t0] in the convolution zk0 ∗Dk0 . Thus,
when updating the value of the coefficient zk0 [t0], βk0 [t0] is not updated.

We denote z(q+1)
k the activation signal where the coefficient zk0 [t0] as been updated to

z′k0
[t0], i.e.,

z
(q+1)
k [t] =

z′k0
[t0], if (k, t) = (k0, t0)

zk[t], elsewhere
.

For (k, t) 6= (k0, t0),
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β
(q+1)
k [t] =

D���k ∗̃
X − K∑

l=1
z

(1)
l ∗Dl + zk[t]et ∗Dk


 [t]

=

D���k ∗̃
X − K∑

l=1
zl ∗Dl + zk[t]et ∗Dk + (zk0 [t0]− z′k0 [t0])et0 ∗Dk


 [t]

=

D���k ∗̃
X − K∑

l=1
zl ∗Dl + zk[t]et ∗Dk


 [t] +

[
D���k ∗̃

(
(zk0 [t0]− z′k0 [t0])et0 ∗Dk

)]
[t]

= β
(q)
k [t] + (zk0 [t0]− z′k0 [t0])

[
D���k ∗̃

(
et0 ∗Dk

)]
[t]

= β
(q)
k [t] + (D���k ∗̃ Dk)[t− t0](zk0 [t0]− z′k0 [t0])

With this relation, it is possible to keep βk up to date with few operation after each
coordinate update.

A.1.3 Details of the D-step PGD update

First, let’s recall the objective function, as introduced in Subsection 5.3.3:

argmin
{uk},{vk}

E = argmin
{uk},{vk}

N∑
n=1

1
2

∥∥∥∥∥∥Xn −
K∑
k=1

znk ∗ (ukv>k )

∥∥∥∥∥∥
2

2
s.t. ‖uk‖22 ≤ 1 and ‖vk‖22 ≤ 1.

(A.3)

To compute the gradient relatively to a full atom Dk = ukv
>
k ∈ RP×L, we introduce

some constants Φk and Ψk,l, which are constant during the entire D-step:

∇Dk
E =

N∑
n=1

(znk )��� ∗

Xn −
K∑
l=1

znl ∗Dl

 = Φk −
K∑
l=1

Ψk,l ∗Dl (A.4)
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Indeed, we have:

∇Dk
E[t] =

N∑
n=1

(znk )��� ∗

Xn −
K∑
l=1

znl ∗Dl


 [t] (A.5)

=
N∑
n=1

T̃∑
τ=1

znk [τ ]

Xn −
K∑
l=1

znl ∗Dl

 [t+ τ − 1] (A.6)

=
N∑
n=1

T̃∑
τ=1

znk [τ ]

Xn[t+ τ − 1]−
K∑
l=1

L∑
τ ′=1

znl [τ ′]Dl[t+ τ − τ ′]

 (A.7)

= Φk[t]−
K∑
l=1

L∑
τ ′=1

 N∑
n=1

T̃∑
τ=1

znk [τ ]znl [t+ τ − τ ′]

Dl[τ ′] (A.8)

= Φk[t]−
K∑
l=1

L∑
τ ′=1

Ψk,l[t+ 1− τ ′]Dl[τ ′] (A.9)

= Φk[t]−
K∑
l=1

(Ψk,l ∗Dl)[t] (A.10)

where Φk ∈ RP×L are computed with:

Φk[t] =
N∑
n=1

T̃∑
τ=1

znk [τ ]Xn[t+ τ − 1], ∀t ∈ J1, LK, (A.11)

and where Ψk,l ∈ R2L−1 are computed with:

Ψk,l[t] =
N∑
n=1

T̃∑
τ=1

znk [τ ]znl [t+ τ − 1], ∀t ∈ J1, 2L− 1K. (A.12)

Note that in the last equation (A.12), the sum only concerns the defined terms, i.e.(t+
τ − 1) ∈ J1, T̃ K. The computational complexities of Φk and Ψk,l are respectively
O
(
NLTKP

)
and O

(
NLTK2

)
.
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Titre: Modèles non-linéaires pour les séries temporelles neurophysiologiques
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Résumé: Dans les séries temporelles neuro-

physiologiques, on observe de fortes oscillations

neuronales, et les outils d'analyse sont donc

naturellement centrés sur le �ltrage à bande

étroite. Puisque cette approche est trop ré-

ductrice, nous proposons de nouvelles méth-

odes pour représenter ces signaux. Nous cen-

trons tout d'abord notre étude sur le couplage

phase-amplitude (PAC), dans lequel une bande

haute fréquence est modulée en amplitude par

la phase d'une oscillation neuronale plus lente.

Nous proposons de capturer ce couplage dans un

modèle probabiliste appelé modèle autoregressif

piloté (DAR). Cette modélisation permet une

sélection de modèle e�cace grâce à la mesure

de vraisemblance, ce qui constitue un apport

majeur à l'estimation du PAC. Nous présen-

tons di�érentes paramétrisations des modèles

DAR et leurs algorithmes d'inférence rapides,

et discutons de leur stabilité. Puis nous mon-

trons comment utiliser les modèles DAR pour

l'analyse du PAC, et démontrons l'avantage de

l'approche par modélisation avec trois jeux de

donnée. Puis nous explorons plusieurs exten-

sions à ces modèles, pour estimer le signal pi-

lote à partir des données, le PAC sur des sig-

naux multivariés, ou encore des champs réceptifs

spectro-temporels. En�n, nous proposons aussi

d'adapter les modèles de codage parcimonieux

convolutionnels pour les séries temporelles neu-

rophysiologiques, en les étendant à des distribu-

tions à queues lourdes et à des décompositions

multivariées. Nous développons des algorithmes

d'inférence e�caces pour chaque formulations,

et montrons que l'on obtient de riches représen-

tations de façon non-supervisée.

Title: Non-linear models for neurophysiological time series

Keywords: Time series � modeling � autoregressive � convolutional sparse coding � cross-

frequency coupling � multivariate � encoding � neurophysiology � magneto-encephalography

Abstract: In neurophysiological time series,

strong neural oscillations are observed in the

mammalian brain, and the natural processing

tools are thus centered on narrow-band linear

�ltering. As this approach is too reductive, we

propose new methods to represent these sig-

nals. We �rst focus on the study of phase-

amplitude coupling (PAC), which consists in an

amplitude modulation of a high frequency band,

time-locked with a speci�c phase of a slow neu-

ral oscillation. We propose to use driven au-

toregressive models (DAR), to capture PAC in

a probabilistic model. Giving a proper model

to the signal enables model selection by using

the likelihood of the model, which constitutes

a major improvement in PAC estimation. We

�rst present di�erent parametrization of DAR

models, with fast inference algorithms and sta-

bility discussions. Then, we present how to use

DAR models for PAC analysis, demonstrating

the advantage of the model-based approach on

three empirical datasets. Then, we explore dif-

ferent extensions to DARmodels, estimating the

driving signal from the data, PAC in multivari-

ate signals, or spectro-temporal receptive �elds.

Finally, we also propose to adapt convolutional

sparse coding (CSC) models for neurophysiolog-

ical time-series, extending them to heavy-tail

noise distribution and multivariate decomposi-

tions. We develop e�cient inference algorithms

for each formulation, and show that we obtain

rich unsupervised signal representations.
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