0. Abstract

- In this paper, we introduce new parametricand generative driven auto-regressive (DAR) models. DAR models provide a non-linear and non-stationary spectral estimation of a signal, conditionally to another exogenous signal.
- We detail how inference can be done efficiently while guaranteeing model stability. We show how model comparison and hyper-parameter selection can be done using likelihood estimates. We also point out the limits of DAR models when the exogenous signal contains too high frequencies.
- Finally, we illustrate how DAR models can be applied on neuro-physiologic signals to characterize phase-amplitude coupling.

2. Model selection

- Model likelihood
 \[L = \prod_{t \in P} \frac{1}{\sqrt{2\pi\sigma(t)^2}} \exp \left(-\frac{(z(t))^2}{2\sigma(t)^2} \right) \]

- Bayesian information criterion (BIC)
 \[BIC = -2\log(L) + d\log(T) \]
 where \(d = (p + 1)(m + 1) \)

- Simulations: we create DAR model, synthetize a driver and a signal, and try to recover the model order with BIC selection.

3. Application to neuroscience

In neuroscience, phase-amplitude coupling refers to the interaction between:
- The phase of a slow neural oscillation \(x \)
- The amplitude of high frequencies \(y \)

Example of a signal from human electro-physiology

We band-pass filter the driver \(x \) from the signal, and apply DAR models on the high frequencies \(y \), to estimate the PAC.

The PSD varies as a function of the driver

4. Comparison with LSTAR

- Logistic smooth-transition AR
 \[a_i(t) = \sum_{j=0}^{m} a_{ij} F_j(x(t)) \]
 \[F_j(x(t)) = \left(1 + e^{-c_j(x(t) - c_{ij})} \right)^{-1} \]
- For fair comparison we added
 \[\log(\sigma(t)) = \sum_{j=0}^{m} b_j F_j(x(t)) \]

BIC comparison on a signal from human electro-physiology

References